Back to Search Start Over

Neuronal Architecture of a Visual Center that Processes Optic Flow

Authors :
Fumi Kubo
Yunmin Wu
Anna Kramer
Herwig Baier
Source :
Neuron
Publication Year :
2019
Publisher :
Elsevier BV, 2019.

Abstract

Animals use global image motion cues to actively stabilize their position by compensatory movements. Neurons in the zebrafish pretectum distinguish different optic flow patterns, e.g., rotation and translation, to drive appropriate behaviors. Combining functional imaging and morphological reconstruction of single cells, we revealed critical neuroanatomical features of this sensorimotor transformation. Terminals of direction-selective retinal ganglion cells (DS-RGCs) are located within the pretectal retinal arborization field 5 (AF5), where they meet dendrites of pretectal neurons with simple tuning to monocular optic flow. Translation-selective neurons, which respond selectively to optic flow in the same direction for both eyes, are intermingled with these simple cells but do not receive inputs from DS-RGCs. Mutually exclusive populations of pretectal projection neurons innervate either the reticular formation or the cerebellum, which in turn control motor responses. We posit that local computations in a defined pretectal circuit transform optic flow signals into neural commands driving optomotor behavior. VIDEO ABSTRACT.

Details

ISSN :
08966273
Volume :
103
Database :
OpenAIRE
Journal :
Neuron
Accession number :
edsair.doi.dedup.....29b4f13c11258fa241aee027b5b812e9