Back to Search Start Over

Adaptive Estimation of the spectrum of a stationary Gaussian sequence

Authors :
Fabienne Comte
Graffigne, Christine
Mathématiques Appliquées Paris 5 (MAP5 - UMR 8145)
Université Paris Descartes - Paris 5 (UPD5)-Institut National des Sciences Mathématiques et de leurs Interactions (INSMI)-Centre National de la Recherche Scientifique (CNRS)
Mathématiques Appliquées à Paris 5 ( MAP5 - UMR 8145 )
Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National des Sciences Mathématiques et de leurs Interactions-Centre National de la Recherche Scientifique ( CNRS )
Source :
Publons, Bernoulli, Bernoulli, Bernoulli Society for Mathematical Statistics and Probability, 2001, 7, pp.267-298, Bernoulli 7, no. 2 (2001), 267-298
Publication Year :
2001
Publisher :
HAL CCSD, 2001.

Abstract

In this paper, we study the problem of nonparametric adaptive estimation of the spectral density f of a stationary Gaussian sequence. For this purpose, we consider a collection of finite-dimensional linear spaces (e.g. linear spaces spanned by wavelets or piecewise polynomials on possibly irregular grids or spaces of trigonometric polynomials). We estimate the spectral density by a projection estimator based on the periodogram and built on a data-driven choice of linear space from the collection. This data-driven choice is made via the minimization of a penalized projection contrast. The penalty function depends on \|f\|∞, but we give results including the estimation of this bound. Moreover, we give extensions to the case of unbounded spectral densities (long-memory processes). In all cases, we state non-asymptotic risk bounds in L2-norm for our estimator, and we show that it is adaptive in the minimax sense over a large class of Besov balls.

Details

Language :
English
ISSN :
13507265
Database :
OpenAIRE
Journal :
Publons, Bernoulli, Bernoulli, Bernoulli Society for Mathematical Statistics and Probability, 2001, 7, pp.267-298, Bernoulli 7, no. 2 (2001), 267-298
Accession number :
edsair.doi.dedup.....29a7e1a0fb8c4f59dffb919732a7ad7d