Back to Search
Start Over
Critical time for the observability of Kolmogorov-type equations
- Source :
- Journal de l'École polytechnique — Mathématiques, Journal de l'École polytechnique — Mathématiques, École polytechnique, 2021, ⟨10.5802/jep.160⟩, Journal de l'École polytechnique — Mathématiques, 2021, ⟨10.5802/jep.160⟩
- Publication Year :
- 2020
- Publisher :
- arXiv, 2020.
-
Abstract
- International audience; This paper is devoted to the observability of a class of two-dimensional Kolmogorov-type equations presenting a quadratic degeneracy. We give lower and upper bounds for the critical time. These bounds coincide in symmetric settings, giving a sharp result in these cases. The proof is based on Carleman estimates and on the spectral properties of a family of non-selfadjoint Schrödinger operators, in particular the localization of the first eigenvalue and Agmon type estimates for the corresponding eigenfunctions.
- Subjects :
- 0209 industrial biotechnology
Class (set theory)
General Mathematics
02 engineering and technology
Type (model theory)
01 natural sciences
Mathematics - Spectral Theory
symbols.namesake
020901 industrial engineering & automation
Quadratic equation
Mathematics - Analysis of PDEs
FOS: Mathematics
[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
Applied mathematics
Observability
[MATH]Mathematics [math]
0101 mathematics
Mathematics - Optimization and Control
Spectral Theory (math.SP)
Eigenvalues and eigenvectors
Mathematics
010102 general mathematics
Eigenfunction
Mathematics::Spectral Theory
Optimization and Control (math.OC)
symbols
[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]
Degeneracy (mathematics)
Schrödinger's cat
[MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP]
Analysis of PDEs (math.AP)
Subjects
Details
- ISSN :
- 24297100 and 2270518X
- Database :
- OpenAIRE
- Journal :
- Journal de l'École polytechnique — Mathématiques, Journal de l'École polytechnique — Mathématiques, École polytechnique, 2021, ⟨10.5802/jep.160⟩, Journal de l'École polytechnique — Mathématiques, 2021, ⟨10.5802/jep.160⟩
- Accession number :
- edsair.doi.dedup.....299d034f2c311f5f8a0736538226771b
- Full Text :
- https://doi.org/10.48550/arxiv.2006.01753