Back to Search Start Over

Microstructural evolution of UO2 pellets containing metallic particles of Ru, Rh and Pd during dissolution in nitric acid solution: 3D-ESEM monitoring

Authors :
Laurent Claparede
T. Cordara
V. Trillaud
Renaud Podor
Nicolas Dacheux
C. Lavalette
Adel Mesbah
X. Le Goff
Stéphanie Szenknect
Interfaces de Matériaux en Evolution (LIME)
Institut de Chimie Séparative de Marcoule (ICSM - UMR 5257)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Etude de la Matière en Mode Environnemental (L2ME)
AREVA NC
Institut de Physique Nucléaire d'Orsay (IPNO)
Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)
Source :
Hydrometallurgy, Hydrometallurgy, 2019, 188, pp.182-193. ⟨10.1016/j.hydromet.2019.07.001⟩, Hydrometallurgy, Elsevier, 2019, 188, pp.182-193. ⟨10.1016/j.hydromet.2019.07.001⟩
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

International audience; Uranium dioxide containing 3 mol.% platinum group metals (PGMs) (Ru, Rh, Pd) was synthesized by hydroxide precipitation. The powders were converted to oxides, pelletized and sintered to prepare dense pellets of UO 2 incorporating PGMs particles. The characterization techniques performed revealed a microstructure similar to that of spent nuclear fuel (SNF). Dissolution tests in nitric acid demonstrated that in the presence of PGMs, the uranium dissolution rate was increased and the induction period was shortened. We used a new method based on the acquisition of Environmental Scanning Electron Microscopy (ESEM) micrographs recorded at three tilt angles and at different dissolution times. This method allowed the reconstruction of the topography of the solid/liquid interface. By monitoring the evolution of the solid/liquid interface during dissolution by means of 3D reconstructions, we were able to observe preferential dissolution zones in the vicinity of the PGMs particles and to determine microscopic dissolution rates for several regions of interest. PGMs particles were found mainly at the grain boundaries. In 0.1 M HNO 3 solution at 60˚C, the normalized dissolution rate for uranium at the grain boundaries reached R L (U) = (7 ± 1)×10-2 g.m-2 .d-1 , a value similar to the normalized dissolution rate determined for the whole image over the first 30 days of the experiment. This result showed that the dissolution occurred mainly at the UO 2 grain boundaries in the vicinity of PGMs particles. Furthermore, the 3D reconstructions of the solid/liquid interface were used to determine the evolution of the surface area of the pellet. By combining the weight losses determined at the macroscopic scale using the uranium concentrations in solution with the reactive surface area values, it was possible to estimate an effective normalized dissolution rate for the whole pellet.

Details

Language :
English
ISSN :
0304386X
Database :
OpenAIRE
Journal :
Hydrometallurgy, Hydrometallurgy, 2019, 188, pp.182-193. ⟨10.1016/j.hydromet.2019.07.001⟩, Hydrometallurgy, Elsevier, 2019, 188, pp.182-193. ⟨10.1016/j.hydromet.2019.07.001⟩
Accession number :
edsair.doi.dedup.....299accf6eba4e6d9c8f0ab2a21e327ff