Back to Search
Start Over
A matrix-algebraic algorithm for the Riemannian logarithm on the Stiefel manifold under the canonical metric
- Source :
- Zimmermann, R 2017, ' A matrix-algebraic algorithm for the Riemannian logarithm on the Stiefel manifold under the canonical metric ', SIAM Journal on Matrix Analysis and Applications, vol. 38, no. 2, pp. 322-342 . https://doi.org/10.1137/16M1074485
- Publication Year :
- 2016
-
Abstract
- We derive a numerical algorithm for evaluating the Riemannian logarithm on the Stiefel manifold with respect to the canonical metric. In contrast to the existing optimization-based approach, we work from a purely matrix-algebraic perspective. Moreover, we prove that the algorithm converges locally and exhibits a linear rate of convergence.<br />30 pages, 5 figures, Matlab code
- Subjects :
- Mathematics - Differential Geometry
Pure mathematics
Logarithm
010103 numerical & computational mathematics
Fundamental theorem of Riemannian geometry
Riemannian exponential
Baker-Campbell-Hausdorff
01 natural sciences
Pseudo-Riemannian manifold
Stiefel manifold
symbols.namesake
Baker-Campbell-Hausdorff series
Riemannian logarithm
FOS: Mathematics
Hermitian manifold
Information geometry
Mathematics - Numerical Analysis
0101 mathematics
Exponential map (Riemannian geometry)
Mathematics
Dynkin series
010102 general mathematics
Mathematical analysis
Numerical Analysis (math.NA)
Statistical manifold
Differential Geometry (math.DG)
Goldberg series
15A16, 15B10, 15B57, 33B30, 33F05, 53-04, 65F60
symbols
Analysis
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Zimmermann, R 2017, ' A matrix-algebraic algorithm for the Riemannian logarithm on the Stiefel manifold under the canonical metric ', SIAM Journal on Matrix Analysis and Applications, vol. 38, no. 2, pp. 322-342 . https://doi.org/10.1137/16M1074485
- Accession number :
- edsair.doi.dedup.....2999064aafcabe6c1283083a0eb4498a
- Full Text :
- https://doi.org/10.1137/16M1074485