Back to Search Start Over

Identifying subtypes of mild cognitive impairment from healthy aging based on multiple cortical features combined with volumetric measurements of the hippocampal subfields

Authors :
Ben-Heng Xiao
Shengwen Guo
Congling Wu
Alzheimer’s Disease Neuroimaging Initiative
Source :
Quant Imaging Med Surg
Publication Year :
2020

Abstract

Background Mild cognitive impairment (MCI) is subtle cognitive decline with an estimated 10-15% yearly conversion rate toward Alzheimer's disease (AD). It remains unexplored in brain cortical association areas in different lobes and its changes with progression and conversion of MCI. Methods Brain structural magnetic resonance (MR) images were collected from 102 stable MCI (sMCI) patients. One hundred eleven were converted MCI (cMCI) patients, and 109 were normal control (NC). The cortical surface features and volumes of subcortical hippocampal subfields were calculated using the FreeSurfer software, followed by an analysis of variance (ANOVA) model, to reveal the differences between the NC-sMCI, NC-cMCI, and sMCI-cMCI groups. Afterward, the support vector machine-recursive feature elimination (SVM-RFE) method was applied to determine the differences between the groups. Results The experimental results showed that there were progressive degradations in either range or degree of the brain structure from NC to sMCI, and then to cMCI. The SVM classifier obtained accuracies with 64.62%, 78.96%, and 70.33% in the sMCI-NC, cMCI-NC, and cMCI-sMCI groups, respectively, using the volumes of hippocampal subfields independently. The combination of the volumes from the hippocampal subfields and cortical measurements could significantly increase the performance to 71.86%, 84.64%, and 76.86% for the sMCI-NC, cMCI-NC, and cMCI-sMCI classifications, respectively. Also, the brain regions corresponding to the dominant features with strong discriminative power were widely located in the temporal, frontal, parietal, olfactory cortexes, and most of the hippocampal subfields, which were associated with cognitive decline, memory impairment, spatial navigation, and attention control. Conclusions The combination of cortical features with the volumes of hippocampal subfields could supply critical information for MCI detection and its conversion.

Details

ISSN :
22234292
Volume :
10
Issue :
7
Database :
OpenAIRE
Journal :
Quantitative imaging in medicine and surgery
Accession number :
edsair.doi.dedup.....298e09c87d2f726fdfd9044d621798d6