Back to Search Start Over

On three types of dynamics and the notion of attractor

Authors :
Dmitry Turaev
Sergey Gonchenko
Engineering & Physical Science Research Council (EPSRC)
Source :
Proceedings of the Steklov Institute of Mathematics. 297:116-137
Publication Year :
2017
Publisher :
Pleiades Publishing Ltd, 2017.

Abstract

We propose a theoretical framework for an explanation of the numerically discovered phenomenon of the attractor-repeller merger. We identify regimes which are observed in dynamical systems with attractors as defined in a work by Ruelle and show that these attractors can be of three different types. The first two types correspond to th ewell-known types of chaotic behavior - conservative and dissipative, while the attractors of the third type, the reversible cores, provide a new type of chaos, the so-called mixed dynamics, characterized by the inseparability of dissipative and conservative regimes. We prove that every elliptic orbit of a generic non-conservative time-reversible system is a reversible core. We also prove that a generic reversible system with an elliptic orbit is universal, i.e., it displays dynamics of maximum possible richness and complexity.

Details

ISSN :
15318605 and 00815438
Volume :
297
Database :
OpenAIRE
Journal :
Proceedings of the Steklov Institute of Mathematics
Accession number :
edsair.doi.dedup.....2975973210d3aec90682d11e893ed139
Full Text :
https://doi.org/10.1134/s0081543817040071