Back to Search
Start Over
UV-dependent Alternative Splicing Uncouples p53 Activity and PIG3 Gene Function through Rapid Proteolytic Degradation
- Source :
- Journal of Biological Chemistry. 279:24171-24178
- Publication Year :
- 2004
- Publisher :
- Elsevier BV, 2004.
-
Abstract
- The p53-inducible gene 3 (PIG3) is a transcriptional target of the tumor suppressor protein p53 and is thought to play a role in apoptosis. In this report, we identify a novel alternatively spliced product from the PIG3 gene that we call PIG3AS (PIG3 alternative splice). PIG3AS results from alternative pre-mRNA splicing that skips exon 4 of the five exons included in the PIG3 transcript. The resulting protein product shares its first 206 amino acids with PIG3 but has a unique 42-amino acid C terminus. In unstressed cells and after most DNA damage conditions that induce transcription from the PIG3 gene, production of the PIG3 transcript dominates. However, in response to UV light, pre-mRNA splicing shifts dramatically in favor of PIG3AS. Unlike the PIG3 protein, the PIG3AS protein is rapidly degraded with a short half-life and is stabilized by proteasome inhibition. Our results illustrate the first example of an endogenous, UV-inducible, alternative splicing event and that control of the splicing machinery is involved in the cellular DNA damage response. They also suggest that rapid proteolytic degradation represents a cellular mechanism for uncoupling p53 activity from PIG3 gene activation that is independent of promoter selectivity.
- Subjects :
- Protein isoform
DNA, Complementary
Time Factors
Transcription, Genetic
Ultraviolet Rays
Amino Acid Motifs
Blotting, Western
Molecular Sequence Data
Exonic splicing enhancer
Biology
Biochemistry
Exon
Splicing factor
Protein splicing
Cell Line, Tumor
Proto-Oncogene Proteins
Humans
Amino Acid Sequence
RNA, Messenger
Cloning, Molecular
Promoter Regions, Genetic
Molecular Biology
Reverse Transcriptase Polymerase Chain Reaction
Alternative splicing
Intracellular Signaling Peptides and Proteins
TAF9
Exons
Cell Biology
Molecular biology
Protein Structure, Tertiary
Cell biology
Alternative Splicing
RNA splicing
Tumor Suppressor Protein p53
DNA Damage
Densitometry
Subjects
Details
- ISSN :
- 00219258
- Volume :
- 279
- Database :
- OpenAIRE
- Journal :
- Journal of Biological Chemistry
- Accession number :
- edsair.doi.dedup.....2937798b67bcc79af76b35d2a39dae03
- Full Text :
- https://doi.org/10.1074/jbc.m401049200