Back to Search
Start Over
Integrating Carbon Nanomaterials with Metals for Bio-sensing Applications
- Source :
- Molecular Neurobiology
- Publication Year :
- 2019
- Publisher :
- Humana Press, 2019.
-
Abstract
- Age structure in most developed countries is changing fast as the average lifespan is increasing significantly, calling for solutions to provide improved treatments for age-related neurological diseases and disorders. In order to address these problems, a reliable way of recording information about neurotransmitters from in vitro and in vivo applications is needed to better understand neurological diseases and disorders as well as currently used treatments. Likewise, recent developments in medicine, especially with the opioid crisis, are demanding a swift move to personalized medicine to administer patient needs rather than population-wide averages. In order to enable the so-called personalized medicine, it is necessary to be able to do measurements in vivo and in real time. These actions require sensitive and selective detection of different analytes from very demanding environments. Current state-of-the-art materials are unable to provide sensitive and selective detection of neurotransmitters as well as the required time resolution needed for drug molecules at a reasonable cost. To meet these challenges, we have utilized different metals to grow carbon nanomaterials and applied them for sensing applications showing that there are clear differences in their electrochemical properties based on the selected catalyst metal. Additionally, we have combined atomistic simulations to support optimizing materials for experiments and to gain further understanding of the atomistic level reactions between different analytes and the sensor surface. With carbon nanostructures grown from Ni and Al + Co + Fe hybrid, we can detect dopamine, ascorbic acid, and uric acid simultaneously. On the other hand, nanostructures grown from platinum provide a feasible platform for detection of H2O2 making them suitable candidates for enzymatic biosensors for detection of glutamate, for example. Tetrahedral amorphous carbon electrodes have an ability to detect morphine, paracetamol, tramadol, and O-desmethyltramadol. With carbon nanomaterial-based sensors, it is possible to reach metal-like properties in sensing applications using only a fraction of the metal as seed for the material growth. We have also seen that by using nanodiamonds as growth catalyst for carbon nanofibers, it is not possible to detect dopamine and ascorbic acid simultaneously, although the morphology of the resulting nanofibers is similar to the ones grown using Ni. This further indicates the importance of the metal selection for specific applications. However, Ni as a continuous layer or as separate islands does not provide adequate performance. Thus, it appears that metal nanoparticles combined with fiber-like morphology are needed for optimized sensor performance for neurotransmitter detection. This opens up a new research approach of application-specific nanomaterials, where carefully selected metals are integrated with carbon nanomaterials to match the needs of the sensing application in question.
- Subjects :
- Materials science
Dopamine
Neuroscience (miscellaneous)
chemistry.chemical_element
Metal Nanoparticles
Nanotechnology
02 engineering and technology
Biosensing Techniques
Bio-sensing
010402 general chemistry
01 natural sciences
Article
Nanomaterials
Cellular and Molecular Neuroscience
Humans
Carbon nanomaterials
Neurotransmitter Agents
Carbon nanofiber
Nanotubes, Carbon
Electrochemical Techniques
Hydrogen Peroxide
021001 nanoscience & nanotechnology
Ascorbic acid
Carbon
0104 chemical sciences
Nanostructures
Neurology
chemistry
Amorphous carbon
Metals
Nanofiber
0210 nano-technology
Biosensor
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Molecular Neurobiology
- Accession number :
- edsair.doi.dedup.....291ea6a267883cf23724ec9c8d697e8f