Back to Search Start Over

Biophysical Mechanisms Underlying Outer Hair Cell Loss Associated with a Shortened Tectorial Membrane

Authors :
Christopher Liu
Simon S. Gao
John S. Oghalai
Charles R. Steele
Sunil Puria
Tao Yuan
Source :
Journal of the Association for Research in Otolaryngology. 12:577-594
Publication Year :
2011
Publisher :
Springer Science and Business Media LLC, 2011.

Abstract

The tectorial membrane (TM) connects to the stereociliary bundles of outer hair cells (OHCs). Humans with an autosomal dominant C1509G mutation in alpha-tectorin, a protein constituent of the TM, are born with a partial hearing loss that worsens over time. The Tecta(C1509/+) transgenic mouse with the same point mutation has partial hearing loss secondary to a shortened TM that only contacts the first row of OHCs. As well, Tecta(C1509G/+) mice have increased expression of the OHC electromotility protein, prestin. We sought to determine whether these changes impact OHC survival. Distortion product otoacoustic emission thresholds in a quiet environment did not change to 6 months of age. However, noise exposure produced acute threshold shifts that fully recovered in Tecta (+/+) mice but only partially recovered in Tecta(C1509G/+) mice. While Tecta(+/+) mice lost OHCs primarily at the base and within all three rows, Tecta(C1509G/+) mice lost most of their OHCs in a more apical region of the cochlea and nearly completely within the first row. In order to estimate the impact of a shorter TM on the forces faced by the stereocilia within the first OHC row, both the wild type and the heterozygous conditions were simulated in a computational model. These analyses predicted that the shear force on the stereocilia is ~50% higher in the heterozygous condition. We then measured electrically induced movements of the reticular lamina in situ and found that while they decreased to the noise floor in prestin null mice, they were increased by 4.58 dB in Tecta(C1509G/+) mice compared to Tecta(+/+) mice. The increased movements were associated with a fourfold increase in OHC death as measured by vital dye staining. Together, these findings indicate that uncoupling the TM from some OHCs leads to partial hearing loss and places the remaining coupled OHCs at higher risk. Both the mechanics of the malformed TM and the increased prestin-related movements of the organ of Corti contribute to this higher risk profile.

Details

ISSN :
14387573 and 15253961
Volume :
12
Database :
OpenAIRE
Journal :
Journal of the Association for Research in Otolaryngology
Accession number :
edsair.doi.dedup.....2900e21c33ca58ed5531b165dd14db8b