Back to Search Start Over

Two-Step Question Retrieval for Open-Domain QA

Authors :
Yeon Seonwoo
Juhee Son
Jiho Jin
Sang-Woo Lee
Ji-Hoon Kim
Jung-Woo Ha
Alice Oh
Publication Year :
2022
Publisher :
arXiv, 2022.

Abstract

The retriever-reader pipeline has shown promising performance in open-domain QA but suffers from a very slow inference speed. Recently proposed question retrieval models tackle this problem by indexing question-answer pairs and searching for similar questions. These models have shown a significant increase in inference speed, but at the cost of lower QA performance compared to the retriever-reader models. This paper proposes a two-step question retrieval model, SQuID (Sequential Question-Indexed Dense retrieval) and distant supervision for training. SQuID uses two bi-encoders for question retrieval. The first-step retriever selects top-k similar questions, and the second-step retriever finds the most similar question from the top-k questions. We evaluate the performance and the computational efficiency of SQuID. The results show that SQuID significantly increases the performance of existing question retrieval models with a negligible loss on inference speed.<br />Comment: ACL2022-Findings

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....28d434f332c118ae411835005ca32978
Full Text :
https://doi.org/10.48550/arxiv.2205.09393