Back to Search Start Over

Exploring the upper limit of single-walled carbon nanotube purity by multiple-cycle aqueous two-phase separation

Authors :
Benjamin S. Flavel
Li Wei
Yuan Chen
Wenshan Li
Ralph Krupke
Source :
Nanoscale. 9:11640-11646
Publication Year :
2017
Publisher :
Royal Society of Chemistry (RSC), 2017.

Abstract

Ultrahigh purity semiconducting single-walled carbon nanotubes (S-SWCNTs) are required for high-performance transistors. Aqueous two-phase (ATP) separation is an attractive method to obtain such SWCNTs due to its simplicity and scalability. This work targeted two questions; namely what is the upper limit of S-SWCNT purity that can be achieved by multiple cycles of ATP separation from the most commonly used polyethylene glycol and dextran system and how accurately can commonly used methods characterize the improvement in purity? SWCNT purity in nanotube dispersions obtained by multi-cycle ATP separation (2, 4, 6 and 8 cycles) was evaluated by three methods, including UV-vis-NIR absorption spectroscopy analysis, performance of thin-film field effect transistors (FETs) prepared by drop casting and short-channel FET devices prepared by dielectrophoresis deposition. Absorption spectroscopic analysis and the performance of the thin-film FET devices can hardly differentiate metallic SWCNT residues in the dispersions obtained after 4 cycles with the purity above 99.5%, and the short channel FET devices prepared by dielectrophoresis deposition are more sensitive towards tiny metallic SWCNT residues. A new method was also demonstrated to visualize the minor metallic content in the nanotube suspension using voltage contrast imaging in a scanning electron microscope, which enables rapid screening of many devices and the accurate obtainment of metallic content without performing a large number of individual transconductance measurements.

Details

ISSN :
20403372 and 20403364
Volume :
9
Database :
OpenAIRE
Journal :
Nanoscale
Accession number :
edsair.doi.dedup.....286a914212d1649f84a8e0fa87073b51
Full Text :
https://doi.org/10.1039/c7nr03302h