Back to Search
Start Over
The Adsorption Behavior of Gas Molecules on Co/N Co–Doped Graphene
- Source :
- Molecules, Vol 26, Iss 7700, p 7700 (2021), Molecules, Molecules; Volume 26; Issue 24; Pages: 7700
- Publication Year :
- 2021
- Publisher :
- MDPI AG, 2021.
-
Abstract
- Herein, we have used density functional theory (DFT) to investigate the adsorption behavior of gas molecules on Co/N3 co–doped graphene (Co/N3–gra). We have investigated the geometric stability, electric properties, and magnetic properties comprehensively upon the interaction between Co/N3–gra and gas molecules. The binding energy of Co is −5.13 eV, which is big enough for application in gas adsorption. For the adsorption of C2H4, CO, NO2, and SO2 on Co/N–gra, the molecules may act as donors or acceptors of electrons, which can lead to charge transfer (range from 0.38 to 0.7 e) and eventually change the conductivity of Co/N–gra. The CO adsorbed Co/N3–gra complex exhibits a semiconductor property and the NO2/SO2 adsorption can regulate the magnetic properties of Co/N3–gra. Moreover, the Co/N3–gra system can be applied as a gas sensor of CO and SO2 with high stability. Thus, we assume that our results can pave the way for the further study of gas sensor and spintronic devices.
Details
- ISSN :
- 14203049
- Volume :
- 26
- Database :
- OpenAIRE
- Journal :
- Molecules
- Accession number :
- edsair.doi.dedup.....286135f35f874eadac339b181b7602d1