Back to Search Start Over

Development and evaluation of a triplex TaqMan assay and Next Generation Sequence Analysis for improved detection of Xylella in plant material

Authors :
Theo van der Lee
I.M. Houwers
Patricia van der Zouwen
P.J.M. Bonants
Y. Griekspoor
M.C. Krijger
Jan M. van der Wolf
Source :
Plant Disease 103 (2019) 4, Plant Disease, 103(4)
Publication Year :
2019

Abstract

Xylella fastidiosa is a heterogenous gram-negative bacterial plant pathogen with a wide host range covering over 300 plant species. Since 2013, in Europe, the presence of the pathogen is increasing in a part of the Mediterranean area, but it causes in particular severe disease problems in olive orchards in the Southern part of Italy. Various subspecies of the pathogen were also diagnosed in natural outbreaks and intercepted ornamental plants in Europe, among them Olea europaea, Coffea arabica, and Nerium oleander. The host range of the pathogen can vary, depending on the subspecies and even the strain. The availability of fast and reliable diagnostic tools is indispensable in management strategies to control diseases caused by X. fastidiosa. To improve the reliability of the TaqMan assay, currently widely used in surveys, a triplex TaqMan assay was developed in which two specific and sensitive TaqMan assays, previously designed for X. fastidiosa, were combined with an internal control. The triplex assay exhibited the same diagnostic sensitivity as the simplex assays. In addition, the usefulness of a metagenomic approach using next-generation sequencing (NGS) was demonstrated, in which total DNA extracted from plant material was sequenced. DNA extracts from plant material free of X. fastidiosa, from artificially inoculated hosts plants or from naturally infected plants sampled in France, Spain, and Italy, or intercepted in Austria and the Netherlands, were analyzed for the presence of X. fastidiosa using the metagenomic approach. In all samples, even in samples with a low infection level, but not in the pathogen-free samples, DNA reads were detected specific for X. fastidiosa. In most cases, the pathogen could be identified to the subspecies level, and for one sample even the whole genome could be assembled and the sequence type could be determined. All results of NGS-analyzed samples were confirmed with the triplex TaqMan polymerase chain reaction and loop-mediated isothermal amplification.

Details

Language :
English
ISSN :
01912917
Database :
OpenAIRE
Journal :
Plant Disease 103 (2019) 4, Plant Disease, 103(4)
Accession number :
edsair.doi.dedup.....281358075d61912a7b2ed1d9f0a20fbd