Back to Search Start Over

Fibered cohomology classes in dimension three, twisted Alexander polynomials and Novikov homology

Authors :
Sikorav, Jean-Claude
Unité de Mathématiques Pures et Appliquées (UMPA-ENSL)
École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS)
Source :
Annales de l'Institut Fourier. 73:279-306
Publication Year :
2023
Publisher :
Cellule MathDoc/CEDRAM, 2023.

Abstract

We prove that for "most" closed 3-dimensional manifolds $M$, the existence of a closed non singular one-form in a given cohomology class $u\in H^1 (M,\bf R)$ is equivalent to the fact that every twisted Alexander polynomial $\Delta^H(M,u) \in {\bf Z}[G/\ker u]$ associated to a normal subgroup with finite index $H < \pi_1(M)$ has a unitary $u$-minimal term.<br />Comment: The statement of the main theorem has been corrected. This version has been accepted for publication in Annales de l'Institut Fourier

Details

ISSN :
17775310
Volume :
73
Database :
OpenAIRE
Journal :
Annales de l'Institut Fourier
Accession number :
edsair.doi.dedup.....27dd9b6abb77ca0b3e2e4baa5090cf97