Back to Search
Start Over
Modeling the sensitivity of cyanobacteria blooms to plausible changes in precipitation and air temperature variability
- Source :
- Science of The Total Environment. 812:151586
- Publication Year :
- 2022
- Publisher :
- Elsevier BV, 2022.
-
Abstract
- Many recent studies have attributed the observed variability of cyanobacteria blooms to meteorological drivers and have projected blooms with worsening societal and ecological impacts under future climate scenarios. Nonetheless, few studies have jointly examined their sensitivity to projected changes in both precipitation and temperature variability. Using an Integrated Assessment Model (IAM) of Lake Champlain's eutrophic Missisquoi Bay, we demonstrate a factorial design approach for evaluating the sensitivity of concentrations of chlorophyll a (chl-a), a cyanobacteria surrogate, to global climate model-informed changes in the central tendency and variability of daily precipitation and air temperature. An Analysis of Variance (ANOVA) and multivariate contour plots highlight synergistic effects of these climatic changes on exceedances of the World Health Organization's moderate 50 μg/L concentration threshold for recreational contact. Although increased precipitation produces greater riverine total phosphorus loads, warmer and drier scenarios produce the most severe blooms due to the greater mobilization and cyanobacteria uptake of legacy phosphorus under these conditions. Increases in daily precipitation variability aggravate blooms most under warmer and wetter scenarios. Greater temperature variability raises exceedances under current air temperatures but reduces them under more severe warming when water temperatures exceed optimal values for cyanobacteria growth more often. Our experiments, controlled for wind-induced changes to lake water quality, signal the importance of larger summer runoff events for curtailing bloom growth through reductions of water temperature, sunlight penetration and stratification. Finally, the importance of sequences of wet and dry periods in generating cyanobacteria blooms motivates future research on bloom responses to changes in interannual climate persistence.
- Subjects :
- Cyanobacteria
Chlorophyll a
Environmental Engineering
biology
Chlorophyll A
Phosphorus
Temperature
chemistry.chemical_element
Climate change
Eutrophication
biology.organism_classification
Atmospheric sciences
Pollution
Lakes
chemistry.chemical_compound
chemistry
Environmental Chemistry
Environmental science
Precipitation
Surface runoff
Bloom
Waste Management and Disposal
Subjects
Details
- ISSN :
- 00489697
- Volume :
- 812
- Database :
- OpenAIRE
- Journal :
- Science of The Total Environment
- Accession number :
- edsair.doi.dedup.....27d181923705df2db3b14b4f53e08025