Back to Search
Start Over
Entire Solutions of Hydrodynamical Equations with Exponential Dissipation
- Source :
- Communications in Mathematical Physics, Communications in Mathematical Physics, 2010, 293, pp.519-543. ⟨10.1007/s00220-009-0916-z⟩, Communications in Mathematical Physics, Springer Verlag, 2010, 293, pp.519-543. ⟨10.1007/s00220-009-0916-z⟩, Communications in Mathematical Physics, Springer Verlag, 2010, 293, Issue 2, pp.519-543. ⟨10.1007/s00220-009-0916-z⟩
- Publication Year :
- 2010
- Publisher :
- Springer, 2010.
-
Abstract
- We consider a modification of the three-dimensional Navier--Stokes equations and other hydrodynamical evolution equations with space-periodic initial conditions in which the usual Laplacian of the dissipation operator is replaced by an operator whose Fourier symbol grows exponentially as $\ue ^{|k|/\kd}$ at high wavenumbers $|k|$. Using estimates in suitable classes of analytic functions, we show that the solutions with initially finite energy become immediately entire in the space variables and that the Fourier coefficients decay faster than $\ue ^{-C(k/\kd) \ln (|k|/\kd)}$ for any $C<br />29 pages, 3 figures, Comm. Math. Phys., in press
- Subjects :
- Physical constant
Extrapolation
FOS: Physical sciences
01 natural sciences
Physics::Fluid Dynamics
symbols.namesake
Mathematics - Analysis of PDEs
0103 physical sciences
FOS: Mathematics
0101 mathematics
010306 general physics
Fourier series
Mathematical Physics
Physics
010102 general mathematics
Mathematical analysis
Statistical and Nonlinear Physics
Dissipation
[INFO.INFO-NA]Computer Science [cs]/Numerical Analysis [cs.NA]
Nonlinear Sciences - Chaotic Dynamics
Burgers' equation
Exponential function
Fourier transform
[SDU]Sciences of the Universe [physics]
symbols
Chaotic Dynamics (nlin.CD)
Laplace operator
Analysis of PDEs (math.AP)
Subjects
Details
- Language :
- English
- ISSN :
- 23813652, 00103616, and 14320916
- Database :
- OpenAIRE
- Journal :
- IndraStra Global
- Accession number :
- edsair.doi.dedup.....27c726f795e995b9342b7e07b8fec1a8
- Full Text :
- https://doi.org/10.1007/s00220-009-0916-z⟩