Back to Search Start Over

Entire Solutions of Hydrodynamical Equations with Exponential Dissipation

Authors :
Samriddhi Sankar Ray
Uriel Frisch
Claude Bardos
Edriss S. Titi
Walter Pauls
Laboratoire Jacques-Louis Lions (LJLL)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire Cassiopée
OCA
Max Planck Institute for Dynamics and Self-Organization (MPIDS)
Max-Planck-Gesellschaft
Center for Condensed Matter Theory, Department of Physics
Indian Institute of Science
Department of Mathematics and Department of Mechanical and Aerospace Engineering (DMDMAE)
University of California [Irvine] (UC Irvine)
University of California (UC)-University of California (UC)
University of California [Irvine] (UCI)
University of California-University of California
Laboratoire de Cosmologie, Astrophysique Stellaire & Solaire, de Planétologie et de Mécanique des Fluides (CASSIOPEE)
Université Nice Sophia Antipolis (... - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur
Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
Source :
Communications in Mathematical Physics, Communications in Mathematical Physics, 2010, 293, pp.519-543. ⟨10.1007/s00220-009-0916-z⟩, Communications in Mathematical Physics, Springer Verlag, 2010, 293, pp.519-543. ⟨10.1007/s00220-009-0916-z⟩, Communications in Mathematical Physics, Springer Verlag, 2010, 293, Issue 2, pp.519-543. ⟨10.1007/s00220-009-0916-z⟩
Publication Year :
2010
Publisher :
Springer, 2010.

Abstract

We consider a modification of the three-dimensional Navier--Stokes equations and other hydrodynamical evolution equations with space-periodic initial conditions in which the usual Laplacian of the dissipation operator is replaced by an operator whose Fourier symbol grows exponentially as $\ue ^{|k|/\kd}$ at high wavenumbers $|k|$. Using estimates in suitable classes of analytic functions, we show that the solutions with initially finite energy become immediately entire in the space variables and that the Fourier coefficients decay faster than $\ue ^{-C(k/\kd) \ln (|k|/\kd)}$ for any $C<br />29 pages, 3 figures, Comm. Math. Phys., in press

Details

Language :
English
ISSN :
23813652, 00103616, and 14320916
Database :
OpenAIRE
Journal :
IndraStra Global
Accession number :
edsair.doi.dedup.....27c726f795e995b9342b7e07b8fec1a8
Full Text :
https://doi.org/10.1007/s00220-009-0916-z⟩