Back to Search Start Over

Biomethane potential of food waste: modeling the effects of mild thermal pretreatment and digestion temperature

Authors :
Camilla Maria Braguglia
Giuseppe Mininni
A. Gianico
Pamela Pagliaccia
Daniele Montecchio
Agata Gallipoli
Source :
Environmental technology 38 (2017): 1452–1464. doi:10.1080/09593330.2016.1233293, info:cnr-pdr/source/autori:Daniele Montecchio, Agata Gallipoli, Andrea Gianico, Giuseppe Mininni, Pamela Pagliaccia, Camilla M. Braguglia/titolo:Biomethane potential of food waste: modeling the effects of mild thermal pretreatment and digestion temperature/doi:10.1080%2F09593330.2016.1233293/rivista:Environmental technology/anno:2017/pagina_da:1452/pagina_a:1464/intervallo_pagine:1452–1464/volume:38
Publication Year :
2016
Publisher :
Informa UK Limited, 2016.

Abstract

In order to enhance anaerobic biodegradability of food waste (FW), thermal pretreatment was applied. The effectiveness in terms of biodegradability extent and process rate improvement was investigated. To this aim, Biomethane Potential tests were carried out under mesophilic and thermophilic conditions. The IWA anaerobic digestion Model 1 (ADM1), a powerful tool for modeling the anaerobic digestion (AD) of different substrates, was implemented to predict the methane production. Disintegration constant (k_dis) and maximum acetate uptake rate (km_ac) were identified as the most sensitive parameters and were calibrated over the observed methane production. Pretreatment improvement was more evident in enhancing parameters related to the process rate, such as solubilization extent (+153%) and disintegration constant (+18%), rather than increasing substrate biodegradability. Thermophilic conditions proved to be effective in speeding up the whole AD process, since all the kinetics were significantly improved (disintegration rate increased up to fivefold). Furthermore, it was demonstrated that, after k_dis and km_ac calibration, default thermophilic ADM1 parameters can be suitable to model FW digestion.

Details

ISSN :
1479487X and 09593330
Volume :
38
Database :
OpenAIRE
Journal :
Environmental Technology
Accession number :
edsair.doi.dedup.....27aff3d1fc9e31ec9338236661e94629
Full Text :
https://doi.org/10.1080/09593330.2016.1233293