Back to Search Start Over

Fiber quadrisecants in knot isotopies

Authors :
Thomas Fiedler
Vitaliy Kurlin
Institut de Mathématiques de Toulouse UMR5219 (IMT)
Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
Source :
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, Journal of Knot Theory and Its Ramifications, Journal of Knot Theory and Its Ramifications, World Scientific Publishing, 2008, 17 (11), pp.1415-1428. ⟨10.1142/S0218216508006695⟩, Journal of Knot Theory and Its Ramifications, 2008, 17 (11), pp.1415-1428. ⟨10.1142/S0218216508006695⟩
Publication Year :
2007

Abstract

Fix a straight line L in Euclidean 3-space and consider the fibration of the complement of L by half-planes. A generic knot K in the complement of L has neither fiber quadrisecants nor fiber extreme secants such that K touches the corresponding half-plane at 2 points. Both types of secants occur in generic isotopies of knots. We give lower bounds for the number of these fiber secants in all isotopies connecting given isotopic knots. The bounds are expressed in terms of invariants calculable in linear time with respect to the number of crossings.<br />12 pages, 8 figures

Details

Language :
English
ISSN :
02182165
Database :
OpenAIRE
Journal :
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, Journal of Knot Theory and Its Ramifications, Journal of Knot Theory and Its Ramifications, World Scientific Publishing, 2008, 17 (11), pp.1415-1428. ⟨10.1142/S0218216508006695⟩, Journal of Knot Theory and Its Ramifications, 2008, 17 (11), pp.1415-1428. ⟨10.1142/S0218216508006695⟩
Accession number :
edsair.doi.dedup.....27a5886d919890ed0512d2e316e88a29
Full Text :
https://doi.org/10.1142/S0218216508006695⟩