Back to Search Start Over

Expanding WordNet with Gloss and Polysemy Links for Evocation Strength Recognition

Authors :
Ewa Rudnicka
Marek Maziarz
Source :
Cognitive Studies | Études cognitives, Vol 0, Iss 20 (2020)
Publication Year :
2020
Publisher :
Institute of Slavic Studies Polish Academy of Sciences, 2020.

Abstract

Expanding WordNet with Gloss and Polysemy Links for Evocation Strength RecognitionEvocation – a phenomenon of sense associations going beyond standard (lexico)-semantic relations – is difficult to recognise for natural language processing systems. Machine learning models give predictions which are only moderately correlated with the evocation strength. It is believed that ordinary graph measures are not as good at this task as methods based on vector representations. The paper proposes a new method of enriching the WordNet structure with weighted polysemy and gloss links, and proves that Dijkstra’s algorithm performs equally as well as other more sophisticated measures when set together with such expanded structures. Rozszerzenie WordNetu o glosy i relacje polisemiczne na potrzeby rozpoznawania siły ewokacjiEwokacja – zjawisko skojarzeń zmysłowych wykraczających poza standardowe (leksykalne) relacje semantyczne – jest trudne do rozpoznania dla systemów przetwarzania języka naturalnego. Modele uczenia maszynowego dają prognozy tylko umiarkowanie skorelowane z siłą ewokacji. Uważa się, że zwykłe miary grafowe nie są tak dobre w tym zadaniu, jak metody oparte na reprezentacjach wektorowych. Proponujemy nową metodę wzbogacania struktury WordNet o polisemie ważone i linki połysku i udowadniamy, że algorytm Dijkstry zestawiony z tak rozbudowanymi strukturami działa a także inne, bardziej wyrafinowane środki.

Details

ISSN :
23922397
Database :
OpenAIRE
Journal :
Cognitive Studies | Études cognitives
Accession number :
edsair.doi.dedup.....27813c207f034be5679fe0caac8cbc7b
Full Text :
https://doi.org/10.11649/cs.2325