Back to Search
Start Over
Tuning thermal transport in ultrathin silicon membranes by surface nanoscale engineering
- Source :
- Neogi, S, Reparaz, J S, Pereira, L F C, Graczykowski, B, Wagner, M R, Sledzinska, M, Shchepetov, A, Prunnila, M, Ahopelto, J, Sotomayor-Torres, C M & Donadio, D 2015, ' Tuning thermal transport in ultrathin silicon membranes by surface nanoscale engineering ', ACS Nano, vol. 9, no. 4, pp. 3820-3828 . https://doi.org/10.1021/nn506792d, Digital.CSIC. Repositorio Institucional del CSIC, instname, Recercat. Dipósit de la Recerca de Catalunya, Recercat: Dipósit de la Recerca de Catalunya, Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya), Dipòsit Digital de Documents de la UAB, Universitat Autònoma de Barcelona, ACS nano, vol 9, iss 4
- Publication Year :
- 2015
- Publisher :
- American Chemical Society, 2015.
-
Abstract
- ACS AuthorChoice - This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.<br />A detailed understanding of the connections of fabrication and processing to structural and thermal properties of low-dimensional nanostructures is essential to design materials and devices for phononics, nanoscale thermal management, and thermoelectric applications. Silicon provides an ideal platform to study the relations between structure and heat transport since its thermal conductivity can be tuned over 2 orders of magnitude by nanostructuring. Combining realistic atomistic modeling and experiments, we unravel the origin of the thermal conductivity reduction in ultrathin suspended silicon membranes, down to a thickness of 4 nm. Heat transport is mostly controlled by surface scattering: rough layers of native oxide at surfaces limit the mean free path of thermal phonons below 100 nm. Removing the oxide layers by chemical processing allows us to tune the thermal conductivity over 1 order of magnitude. Our results guide materials design for future phononic applications, setting the length scale at which nanostructuring affects thermal phonons most effectively.<br />This work is partly funded by the European Commission FP7-ENERGY-FET project MERGING, NMP QUANTIHEAT and ICT NANOTHERM, with Grant Agreement Nrs: 309150, 604668 and 318117, respectively. S.N. and D.D. acknowledge financial support from MPG under the MPRG program. J.S.R., M.R.W., and C.M.S.T. acknowledge support form the Spanish MINECO projects TAPHOR (MAT-2012-31392) and nanoTHERM (CONSOLIDER CSD2010-00044). M.R.W. acknowledges support of the Marie Curie Postdoctoral Fellowship HeatProNano (Grant No. 628197). M.P. and A.S. acknowledge funding from the Academy of Finland (Grant No. 252598).
- Subjects :
- Materials science
Nanostructure
Silicon
Orders of magnitude (temperature)
General Physics and Astronomy
chemistry.chemical_element
phonon engineering
Si membranes
02 engineering and technology
Inelastic light scattering
7. Clean energy
01 natural sciences
Quasi-2D system
dispersion relations
Two-laser Raman thermometry
Thermal conductivity
Optics
inelastic light scattering
0103 physical sciences
Thermoelectric effect
Thermal
General Materials Science
Nanoscience & Nanotechnology
010306 general physics
Nanoscopic scale
Classical molecular dynamics
business.industry
classical molecular dynamics
lattice thermal transport
General Engineering
021001 nanoscience & nanotechnology
two-laser Raman thermometry
Phonon engineering
chemistry
Lattice thermal transport
Optoelectronics
quasi-2D system
0210 nano-technology
business
Order of magnitude
Dispersion relations
Subjects
Details
- ISSN :
- 1936086X and 19360851
- Database :
- OpenAIRE
- Journal :
- ACS Nano
- Accession number :
- edsair.doi.dedup.....274a87df50e33793ff6582560232c640
- Full Text :
- https://doi.org/10.1021/nn506792d