Back to Search
Start Over
A master space for moduli spaces of Gieseker-stable sheaves
- Source :
- Transformation Groups, Transformation Groups, Springer Verlag, 2019, 24, pp.379-401. ⟨10.1007/s00031-018-9477-6⟩
- Publication Year :
- 2019
- Publisher :
- HAL CCSD, 2019.
-
Abstract
- We consider a notion of stability for sheaves, which we call multi-Gieseker stability that depends on several ample polarisations $L_1, \dots, L_N$ and on an additional parameter $\sigma \in \mathbb{Q}_{\geq 0}^N\setminus\{0\}$. The set of semi stable sheaves admits a projective moduli space $\mathcal M_{\sigma}$. We prove that given a finite collection of parameters $\sigma$, there exists a sheaf- and representation-theoretically defined master space $Y$ such that each corresponding moduli space is obtained from $Y$ as a Geometric Invariant Theory (GIT) quotient. In particular, any two such spaces are related by a finite number of "Thaddeus-flips". As a corollary, we deduce that any two Gieseker-moduli space of sheaves (with respect to different polarisations $L_1$ and $L_2$) are related via a GIT-master space. This confirms an old expectation and generalises results from the surface case to arbitrary dimension.<br />Comment: 18 pages
- Subjects :
- Pure mathematics
Algebra and Number Theory
010102 general mathematics
Dimension (graph theory)
Space (mathematics)
Surface (topology)
01 natural sciences
Interpretation (model theory)
Moduli space
Mathematics - Algebraic Geometry
Mathematics::Algebraic Geometry
0103 physical sciences
Mathematik
FOS: Mathematics
14D20, 14J60, 14L24, 16G20
010307 mathematical physics
Geometry and Topology
Geometric invariant theory
0101 mathematics
[MATH]Mathematics [math]
Algebraic Geometry (math.AG)
Finite set
Quotient
ComputingMilieux_MISCELLANEOUS
Mathematics
Subjects
Details
- Language :
- English
- ISSN :
- 10834362 and 1531586X
- Database :
- OpenAIRE
- Journal :
- Transformation Groups, Transformation Groups, Springer Verlag, 2019, 24, pp.379-401. ⟨10.1007/s00031-018-9477-6⟩
- Accession number :
- edsair.doi.dedup.....272b23e5e7b6dbff19df056c240f660c
- Full Text :
- https://doi.org/10.1007/s00031-018-9477-6⟩