Back to Search Start Over

A master space for moduli spaces of Gieseker-stable sheaves

Authors :
Matei Toma
Daniel Greb
Julius Ross
Department of Pure Mathematics and Mathematical Statistics (DPMMS)
Faculty of mathematics Centre for Mathematical Sciences [Cambridge] (CMS)
University of Cambridge [UK] (CAM)-University of Cambridge [UK] (CAM)
Institut Élie Cartan de Lorraine (IECL)
Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Source :
Transformation Groups, Transformation Groups, Springer Verlag, 2019, 24, pp.379-401. ⟨10.1007/s00031-018-9477-6⟩
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

We consider a notion of stability for sheaves, which we call multi-Gieseker stability that depends on several ample polarisations $L_1, \dots, L_N$ and on an additional parameter $\sigma \in \mathbb{Q}_{\geq 0}^N\setminus\{0\}$. The set of semi stable sheaves admits a projective moduli space $\mathcal M_{\sigma}$. We prove that given a finite collection of parameters $\sigma$, there exists a sheaf- and representation-theoretically defined master space $Y$ such that each corresponding moduli space is obtained from $Y$ as a Geometric Invariant Theory (GIT) quotient. In particular, any two such spaces are related by a finite number of "Thaddeus-flips". As a corollary, we deduce that any two Gieseker-moduli space of sheaves (with respect to different polarisations $L_1$ and $L_2$) are related via a GIT-master space. This confirms an old expectation and generalises results from the surface case to arbitrary dimension.<br />Comment: 18 pages

Details

Language :
English
ISSN :
10834362 and 1531586X
Database :
OpenAIRE
Journal :
Transformation Groups, Transformation Groups, Springer Verlag, 2019, 24, pp.379-401. ⟨10.1007/s00031-018-9477-6⟩
Accession number :
edsair.doi.dedup.....272b23e5e7b6dbff19df056c240f660c
Full Text :
https://doi.org/10.1007/s00031-018-9477-6⟩