Back to Search Start Over

Modulation of Drug Resistance in Ovarian Adenocarcinoma by Enhancing Intracellular Ceramide Using Tamoxifen-Loaded Biodegradable Polymeric Nanoparticles

Authors :
Mansoor M. Amiji
Michael V. Seiden
Zhenfeng Duan
Harikrishna Devalapally
Source :
Clinical Cancer Research. 14:3193-3203
Publication Year :
2008
Publisher :
American Association for Cancer Research (AACR), 2008.

Abstract

Purpose: To modulate intracellular ceramide levels and lower the apoptotic threshold in multidrug-resistant ovarian adenocarcinoma, we have examined the efficacy and preliminary safety of tamoxifen coadministration with paclitaxel in biodegradable poly(ethylene oxide)–modified poly(epsilon-caprolactone) (PEO-PCL) nanoparticles.Experimental Design: In vitro cytotoxicity and proapoptotic activity of paclitaxel and tamoxifen, either as single agent or in combination, was examined in wild-type (SKOV3) and MDR-1–positive (SKOV3TR) human ovarian adenocarcinoma cells. Subcutaneous SKOV3 and SKOV3TR xenografts were established in female nu/nu mice, and this model was used to evaluate the antitumor efficacy and preliminary safety. Paclitaxel (20 mg/kg) and tamoxifen (70 mg/kg) were administered i.v. either as a single agent or in combination in aqueous solution and in PEO-PCL nanoparticles.Results: In vitro cytotoxicity results showed that administration of paclitaxel and tamoxifen in combination lowered the IC50 of paclitaxel by 10-fold in SKOV3 cells and by >3-fold in SKOV3TR cells. The combination paclitaxel/tamoxifen co-therapy showed even more pronounced effect when administered in nanoparticle formulations. Upon i.v. administration of paclitaxel/tamoxifen combination in PEO-PCL nanoparticle formulations, significant enhancement in antitumor efficacy was observed. Furthermore, the combination paclitaxel/tamoxifen therapy did not induce any acute toxicity as measured by body weight changes, blood cell counts, and hepatotoxicity.Conclusions: The results of this study show that combination of paclitaxel and tamoxifen in biodegradable PEO-PCL nanoparticles can serve as an effective clinically translatable strategy to overcome multidrug resistance in ovarian cancer.

Details

ISSN :
15573265 and 10780432
Volume :
14
Database :
OpenAIRE
Journal :
Clinical Cancer Research
Accession number :
edsair.doi.dedup.....270f69d05f6904d0d606481d1d1dd7aa