Back to Search Start Over

Placing sensors in sewer networks: A system to pinpoint new cases of coronavirus

Authors :
Richard C. Larson
Oded Berman
Mehdi Nourinejad
Source :
PLoS ONE, Vol 16, Iss 4, p e0248893 (2021), PLoS ONE
Publication Year :
2021
Publisher :
Public Library of Science (PLoS), 2021.

Abstract

We consider a proposed system that would place sensors in a number of wastewater manholes in a community in order to detect genetic remnants of SARS-Cov-2 found in the excreted stool of infected persons. These sensors would continually monitor the manhole’s wastewater, and whenever virus remnants are detected, transmit an alert signal. In a recent paper, we described two new algorithms, each sequentially opening and testing successive manholes for genetic remnants, each algorithm homing in on a neighborhood where the infected person or persons are located. This paper extends that work in six important ways: (1) we introduce the concept of in-manhole sensors, as these sensors will reduce the number of manholes requiring on-site testing; (2) we present a realistic tree network depicting the topology of the sewer pipeline network; (3) for simulations, we present a method to create random tree networks exhibiting key attributes of a given community; (4) using the simulations, we empirically demonstrate that the mean and median number of manholes to be opened in a search follows a well-known logarithmic function; (5) we develop procedures for determining the number of sensors to deploy; (6) we formulate the sensor location problem as an integer nonlinear optimization and develop heuristics to solve it. Our sensor-manhole system, to be implemented, would require at least three additional steps in R&D: (a) an accurate, inexpensive and fast SARS-Cov-2 genetic-remnants test that can be done at the manhole; (b) design, test and manufacture of the sensors; (c) in-the-field testing and fine tuning of an implemented system.

Details

ISSN :
19326203
Volume :
16
Database :
OpenAIRE
Journal :
PLOS ONE
Accession number :
edsair.doi.dedup.....270d3488c74fa3abfcdad4b4a7758229