Back to Search Start Over

Hyaluronan production enhances shedding of plasma membrane-derived microvesicles

Authors :
Sanna Oikari
Kirsi Rilla
Ashik Jawahar Deen
Ville Koistinen
Sara Wojciechowski
Sanna Pasonen-Seppänen
Genevieve Bart
Raija Tammi
Kari Törrönen
Riikka Kärnä
Markku Tammi
Source :
Experimental Cell Research. 319:2006-2018
Publication Year :
2013
Publisher :
Elsevier BV, 2013.

Abstract

Many cell types secrete plasma membrane-bound microvesicles, suggested to play an important role in tissue morphogenesis, wound healing, and cancer spreading. However, the mechanisms of their formation have remained largely unknown. It was found that the tips of long microvilli induced in cells by overexpression of hyaluronan synthase 3 (HAS3) were detach into the culture medium as microvesicles. Moreover, several cell types with naturally active hyaluronan synthesis released high numbers of plasma membrane-derived vesicles, and inhibition of hyaluronan synthesis reduced their formation. The vesicles contained HAS, and were covered with a thick hyaluronan coat, a part of which was retained even after purification with high-speed centrifugation. HAS3 overexpressing MDCK cells cultured in a 3-D matrix as epithelial cysts released large amounts of HAS- and hyaluronan-positive vesicles from their basal surfaces into the extracellular matrix. As far as we know, hyaluronan synthesis is one of the first molecular mechanisms shown to stimulate the production of microvesicles. The microvesicles have a potential to deliver the hyaluronan synthase machinery and membrane and cytoplasmic materials to other cells, influencing tissue regeneration, inflammation and tumor progression.

Details

ISSN :
00144827
Volume :
319
Database :
OpenAIRE
Journal :
Experimental Cell Research
Accession number :
edsair.doi.dedup.....26d8e7dce934d376f2ad9fba466b6735