Back to Search
Start Over
VALIDATION OF AXIAL VOID PROFILE MEASURED BY NEUTRON NOISE TECHNIQUES IN CROCUS
- Source :
- EPJ Web of Conferences, Vol 247, p 08004 (2021)
- Publication Year :
- 2021
- Publisher :
- EDP Sciences, 2021.
-
Abstract
- Recently a joint project has been carried out between the Paul Scherrer Institut, the Ecole Polytechnique Federale de Lausanne and swissnuclear, an industrial partner, in order to determine the axial void distribution in a channel installed in the reflector of the zero power research reactor CROCUS, using neutron noise techniques. The main objective of the present paper is to report on the validation of the results against an alternative measurement technique using gamma-ray attenuation and simulations with the TRACE code. For the gamma-ray attenuation experiments, the channel used in CROCUS is installed out of the core in a Plexiglass water tank. The source and detector are fixed and the channel is moved axially to keep the geometry of the source/detector arrangement untouched. This is key to measure the void effect by gamma attenuation due to the low contrast of this technique. The paper compares the experimental results obtained with both techniques, with the outcomes of simulations carried out with the TRACE code. Even though the quantitative void fraction estimations are not consistent, the trends obtained with the simulation and experimental techniques are the same. The discrepancies between the various experimental techniques and the simulation outcomes are related to the heterogeneous distribution of the water-air mixture in the radial sections of the channel.
- Subjects :
- Physics
010308 nuclear & particles physics
Attenuation
Acoustics
QC1-999
Detector
01 natural sciences
attenuation measurements
two-phase flow
0103 physical sciences
Void (composites)
Research reactor
Two-phase flow
010306 general physics
Axial symmetry
Porosity
Communication channel
void measurements
Subjects
Details
- Language :
- English
- Volume :
- 247
- Database :
- OpenAIRE
- Journal :
- EPJ Web of Conferences
- Accession number :
- edsair.doi.dedup.....26d5baccabfd65ff512a0943469a789b