Back to Search Start Over

Spatial prediction of flood potential using new ensembles of bivariate statistics and artificial intelligence: A case study at the Putna river catchment of Romania

Authors :
Dieu Tien Bui
Romulus Costache
Source :
The Science of the total environment. 691
Publication Year :
2019

Abstract

Flash-flood is considered to be one of the most destructive natural hazards in the world, which is difficult to accurately model and predict. The objective of the present research is to propose new ensembles of bivariate statistics and artificial intelligences and to introduce a comprehensive methodology for predicting flood susceptibility. The Putna river catchment of Romania is selected as a case study. In this regard, a total of six ensemble models were proposed and verified: Multilayer Perceptron neural network-Frequency Ratio (MLP-FR), Multilayer Perceptron neural network -Weights of Evidence (MLP-WOE), Rotation Forest-Frequency Ratio (RF-FR), Rotation Forest-Weights of Evidence (RF-WOE), Classification and Regression Tree-Frequency Ratio (CART-FR), and Classification and Regression Tree-Weights of Evidence (CART-WOE). In a first step, a geospatial database was created for the study area. This database includes 132 flood locations and 14 conditioning factors (lithology, slope angle, plan curvature, hydrological soil group, topographic wetness index, landuse, convergence index, elevation, distance from river, profile curvature, rainfall, aspect, stream power index, and topographic position index). In the next step, the Information Gain Ratio was used to evaluate the predictive ability of these factors. Subsequently, the database was used to train and validate the six ensemble models. The Receiver operating characteristic (ROC) curve, area under the curve (AUC), and statistical measures were used to evaluate the performance of the models. The results show that the prediction capability of the proposed ensemble models varied from 86.8% (the RF-FR model) to 93.9% (the RF-WOE model). These values indicate a high prediction performance for all the models. Therefore, we can state that the proposed ensemble models are new reliable tools which can be used for flood susceptibility modelling.

Details

ISSN :
18791026
Volume :
691
Database :
OpenAIRE
Journal :
The Science of the total environment
Accession number :
edsair.doi.dedup.....26aeb013a0e75f959a8853437c7caeaf