Back to Search
Start Over
Criterion for logarithmic connections with prescribed residues
- Source :
- BIRD: BCAM's Institutional Repository Data, instname
- Publication Year :
- 2017
-
Abstract
- A theorem of Weil and Atiyah says that a holomorphic vector bundle $E$ on a compact Riemann surface $X$ admits a holomorphic connection if and only if the degree of every direct summand of $E$ is zero. Fix a finite subset $S$ of $X$, and fix an endomorphism $A(x) \in \text{End}(E_x)$ for every $x \in S$. It is natural to ask when there is a logarithmic connection on $E$ singular over $S$ with residue $A(x)$ at every $x \in S$. We give a necessary and sufficient condition for it under the assumption that the residues $A(x)$ are rigid.<br />Final version
- Subjects :
- Endomorphism
Logarithm
53B15, 14H60
General Mathematics
Holomorphic function
Algebraic geometry
01 natural sciences
Combinatorics
Mathematics - Algebraic Geometry
residue
0103 physical sciences
FOS: Mathematics
logarithmic Atiyah bundle
Compact Riemann surface
Complex Variables (math.CV)
0101 mathematics
Algebraic Geometry (math.AG)
Holomorphic vector bundle
Mathematics
Discrete mathematics
Mathematics - Complex Variables
010102 general mathematics
Logarithmic connection
Number theory
rigidity
010307 mathematical physics
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- BIRD: BCAM's Institutional Repository Data, instname
- Accession number :
- edsair.doi.dedup.....26a8534f0daf9a1cedb30279f656725b