Back to Search Start Over

Shared ancestral polymorphisms and chromosomal rearrangements as potential drivers of local adaptation in a marine fish

Authors :
Hugo Cayuela
Sissel Jentoft
Marie Clément
Siv Nam Khang Hoff
Martin Laporte
Kim Præbel
Eric Normandeau
Teunis Jansen
Claire Mérot
Ole K. Tørresen
Pascal Sirois
Yann Dorant
Quentin Rougemont
Martin Castonguay
Louis Bernatchez
Source :
Cayuela, H, Rougemont, Q, Laporte, M, Mérot, C, Normandeau, E, Dorant, Y, Tørresen, O K, Hoff, S N K, Jentoft, S, Sirois, P, Castonguay, M, Jansen, T, Praebel, K, Clément, M & Bernatchez, L 2020, ' Shared ancestral polymorphism and chromosomal rearrangements as potential drivers of local adaptation in a marine fish ', Molecular Ecology, vol. 29, no. 13, pp. 2379-2398 . https://doi.org/10.1111/mec.15499
Publication Year :
2019

Abstract

Gene flow has tremendous importance for local adaptation, by influencing the fate of de novo mutations, maintaining standing genetic variation and driving adaptive introgression. Furthermore, structural variation as chromosomal rearrangements may facilitate adaptation despite high gene flow. However, our understanding of the evolutionary mechanisms impending or favouring local adaptation in the presence of gene flow is still limited to a restricted number of study systems. In this study, we examined how demographic history, shared ancestral polymorphism, and gene flow among glacial lineages contribute to local adaptation to sea conditions in a marine fish, the capelin (Mallotus villosus). We first assembled a 490-Mbp draft genome of M. villosus to map our RAD sequence reads. Then, we used a large data set of genome-wide single nucleotide polymorphisms (25,904 filtered SNPs) genotyped in 1,310 individuals collected from 31 spawning sites in the northwest Atlantic. We reconstructed the history of divergence among three glacial lineages and showed that they probably diverged from 3.8 to 1.8 million years ago and experienced secondary contacts. Within each lineage, our analyses provided evidence for large Ne and high gene flow among spawning sites. Within the Northwest Atlantic lineage, we detected a polymorphic chromosomal rearrangement leading to the occurrence of three haplogroups. Genotype-environment associations revealed molecular signatures of local adaptation to environmental conditions prevailing at spawning sites. Our study also suggests that both shared polymorphisms among lineages, resulting from standing genetic variation or introgression, and chromosomal rearrangements may contribute to local adaptation in the presence of high gene flow.

Details

ISSN :
1365294X
Volume :
29
Issue :
13
Database :
OpenAIRE
Journal :
Molecular ecologyREFERENCES
Accession number :
edsair.doi.dedup.....269787acd35c6d949df5da0b38579615
Full Text :
https://doi.org/10.1111/mec.15499