Back to Search Start Over

Reactivation of latent herpes simplex virus by adenovirus recombinants encoding mutant IE-0 gene products

Authors :
Jianxing Chen
C. S. H. Young
Saul Silverstein
Xiuxuan Zhu
Source :
Journal of virology. 64(9)
Publication Year :
1990

Abstract

We have previously shown that adenovirus recombinants expressing functional ICP0 reactivate latent herpes simplex virus type 2 (HSV-2) in an in vitro latency system. This study demonstrated that ICP0, independent of other HSV gene products, is sufficient to reactivate latent HSV-2 in this in vitro system. To assess the effects of defined mutations in the sequence encoding ICP0 (IE-0) on reactivation, seven in-frame insertion and three in-frame deletion mutants were moved into an adenovirus expression vector. Each recombinant directed the synthesis of stable ICP0 of the correct size. The transactivation activity of the mutated sequences in these recombinants was similar to that when they were tested in plasmids. When these recombinants were examined for their ability to reactivate in the in vitro latency system, mutants with dramatic defects in transactivation (Ad-0/125, Ad-0/89, Ad-0/2/7, and Ad-0/88/93) were unable to reactivate latent HSV-2 independent of the multiplicity of infection. An exception to this correlation was the finding that Ad-0/89, which transactivated poorly, was able to reactivate latent virus after prolonged incubation whereas other transactivation-deficient mutants could not. Moreover, the presence of ICP4 did not compensate for the inability of any of the recombinants tested to reactivate HSV-2. These results show that (i) the transactivation domains of ICP0 are also used in reactivation, (ii) the presence of another essential HSV regulatory protein ICP4 does not alter the pattern of reactivation by ICP0, and (iii) mutations in some regions of IE-0 previously shown to affect viral growth and plaque formation did not alter its ability to reactivate in this in vitro system.

Details

ISSN :
0022538X
Volume :
64
Issue :
9
Database :
OpenAIRE
Journal :
Journal of virology
Accession number :
edsair.doi.dedup.....268a2382c392b11cc8424b0f6b554669