Back to Search Start Over

Development and validation of a gas chromatography–mass spectrometry method to analyze octanoate enrichments at low concentrations in human plasma

Authors :
Suzan J. G. Knottnerus
Henk Schierbeek
Gepke Visser
Johannes B. van Goudoever
Dewi van Harskamp
Graduate School
APH - Methodology
APH - Quality of Care
AGEM - Amsterdam Gastroenterology Endocrinology Metabolism
AR&D - Amsterdam Reproduction & Development
Laboratory Genetic Metabolic Diseases
Neonatology
General Paediatrics
Source :
Analytical and Bioanalytical Chemistry, Analytical and bioanalytical chemistry, 412(23), 5789-5797. Springer Verlag
Publication Year :
2020

Abstract

A new method for accurately analyzing octanoate enrichment in plasma was developed and validated. Samples were derivatized directly in plasma by transesterification with isobutanol and were analyzed by gas chromatography–mass spectrometry (GC-MS). This method was developed to analyze the precursor enrichment in a stable isotope tracer protocol. Glyceryl tri[1,2,3,4-13C4] octanoate, a stable isotope-labeled medium-chain triglyceride (MCT), was orally administered in combination with (1) exclusively MCT or (2) a combination of protein, carbohydrates, and MCT to investigate the metabolic route of oral MCT under various conditions. Accurate analysis of octanoate enrichment in plasma at concentrations as low as 0.43 μM (lower limit of quantification, LLOQ) was performed. This is an improvement of about twenty times for the LLOQ for analysis of the enrichment of octanoate when compared with the gold-standard method for fatty acid analysis (methyl esterification). Moreover, we found that‚ with this gold-standard method, study samples were easily contaminated with (unlabeled) octanoate from other sources, leading to biased, incorrect results. The precision and linearity obtained using the new method were good (coefficient of variation intraday R2 of the calibration curve > 0.99). The sensitivity was sufficient for analyzing samples obtained using the stable isotope protocol. This new method is more sensitive than methyl esterification and it minimizes the risk of contamination.

Details

Language :
English
ISSN :
16182642
Volume :
412
Issue :
23
Database :
OpenAIRE
Journal :
Analytical and bioanalytical chemistry
Accession number :
edsair.doi.dedup.....2677f818f96e2fe78354a41c9d1375ba