Back to Search Start Over

Formation of iodo-trihalomethanes, iodo-acetic acids, and iodo-acetamides during chloramination of iodide-containing waters: Factors influencing formation and reaction pathways

Authors :
Bernard A. Goodman
Zhenlin Li
Huiyu Dong
Zhimin Qiang
Shaogang Liu
Source :
Journal of Hazardous Materials. 321:28-36
Publication Year :
2017
Publisher :
Elsevier BV, 2017.

Abstract

This study investigated systematically the factors influencing the formation of iodinated disinfection by-products (I-DBPs) during chloramination of I--containing waters, including reaction time, NH2Cl dose, I- concentration, pH, natural organic matter (NOM) concentration, Br-/I- molar ratio, and water matrix. Among the I-DBPs detected, iodoform (CHI3), iodoacetic acid (IAA), diiodoacetic acid (DIAA), triiodoacetic acid (TIAA), and diiodoacetamide (DIAcAm) were the major species produced from reactions between reactive iodine species (HOI/I2) and NOM. A kinetic model involving the reactions of NH2Cl auto-decomposition, iodine species transformation and NOM consumption was developed, which could well describe NH2Cl decay and HOI/I2 evolution. Higher concentrations of CHI3, IAA, DIAA, TIAA, and DIAcAm were observed in chloramination than in chlorination, whereas IO3- was only formed significantly in chlorination. Maximum formation of I-DBPs occurred at pH 8.0, but acidic conditions favored the formation of iodinated haloacetic acids and DIAcAm. Increasing Br-/I- molar ratio from 1 to 10 did not increase the total amount of I-DBPs, but produced more bromine-substituting species. In addition, chloramination of 18 model compounds indicated that low-SUVA254 (specific ultraviolet absorbance at 254nm) NOM generally favored the formation of I-DBPs compared to high-SUVA254 NOM. Finally, potential pathways for I-DBPs formation from chloramination of NOM were proposed.

Details

ISSN :
03043894
Volume :
321
Database :
OpenAIRE
Journal :
Journal of Hazardous Materials
Accession number :
edsair.doi.dedup.....266d69697a0993d7b21cc5716a2139f8