Back to Search Start Over

On some aspects of the generalized Petersen graph

Authors :
V. Yegnanarayanan
Source :
Electronic Journal of Graph Theory and Applications, Vol 5, Iss 2, Pp 163-178 (2017)
Publication Year :
2017
Publisher :
The Institute for Research and Community Services (LPPM) ITB, 2017.

Abstract

Let $p \ge 3$ be a positive integer and let $k \in {1, 2, ..., p-1} \ \lfloor p/2 \rfloor$. The generalized Petersen graph GP(p,k) has its vertex and edge set as $V(GP(p, k)) = \{u_i : i \in Zp\} \cup \{u_i^\prime : i \in Z_p\}$ and $E(GP(p, k)) = \{u_i u_{i+1} : i \in Z_p\} \cup \{u_i^\prime u_{i+k}^\prime \in Z_p\} \cup \{u_iu_i^\prime : i \in Z_p\}$. In this paper we probe its spectrum and determine the Estrada index, Laplacian Estrada index, signless Laplacian Estrada index, normalized Laplacian Estrada index, and energy of a graph. While obtaining some interesting results, we also provide relevant background and problems.

Details

ISSN :
23382287
Volume :
5
Database :
OpenAIRE
Journal :
Electronic Journal of Graph Theory and Applications
Accession number :
edsair.doi.dedup.....266bdd25ca680c4cc7c7850c967794ca