Back to Search Start Over

WSDesc: Weakly Supervised 3D Local Descriptor Learning for Point Cloud Registration

Authors :
Lei Li
Hongbo Fu
Maks Ovsjanikov
La Géometrie au Service du Numérique (GEOMERIX)
Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX)
École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Paris (IP Paris)
City University of Hong Kong [Hong Kong] (CUHK)
the ANR AI Chair AIGRETTE
European Project: 758800,ERC,ERC-2017-StG-758800,EXPROTEA(2018)
Source :
IEEE Transactions on Visualization and Computer Graphics, IEEE Transactions on Visualization and Computer Graphics, 2022, IEEE Transactions on Visualization and Computer Graphics (TVCG)
Publication Year :
2023
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2023.

Abstract

In this work, we present a novel method called WSDesc to learn 3D local descriptors in a weakly supervised manner for robust point cloud registration. Our work builds upon recent 3D CNN-based descriptor extractors, which leverage a voxel-based representation to parameterize local geometry of 3D points. Instead of using a predefined fixed-size local support in voxelization, we propose to learn the optimal support in a data-driven manner. To this end, we design a novel differentiable voxelization layer that can back-propagate the gradient to the support size optimization. To train the extracted descriptors, we propose a novel registration loss based on the deviation from rigidity of 3D transformations, and the loss is weakly supervised by the prior knowledge that the input point clouds have partial overlap, without requiring ground-truth alignment information. Through extensive experiments, we show that our learned descriptors yield superior performance on existing geometric registration benchmarks.<br />Comment: To appear in IEEE TVCG

Details

ISSN :
21609306 and 10772626
Volume :
29
Database :
OpenAIRE
Journal :
IEEE Transactions on Visualization and Computer Graphics
Accession number :
edsair.doi.dedup.....2625d11de68b93adfb123736f8b0f4d1