Back to Search
Start Over
Expression and promoter characterization of BbPacC, a pH response transcription factor gene of the entomopathogenic fungus Beauveria bassiana
- Source :
- Microbiology (Reading, England). 160(Pt 2)
- Publication Year :
- 2013
-
Abstract
- To survive, the entomopathogenic fungus Beauveria bassiana, which shows promise as a biocontrol agent for a variety of pests, including agricultural and forestry pests and vectors of human pathogens, must tailor gene expression to the particular pH of its environment. The pH response transcription factor gene BbPacC and its flanking sequence were cloned from this fungus. Quantitative reverse transcription (RT)-PCR revealed that it is highly induced by alkaline pH and salt stress, and the expression level achieved twice that of the housekeeping gene γ-actin. A microfluorometric assay indicated that the 1479 bp promoter region could activate the expression of enhanced green fluorescent protein (EGFP) under the same conditions. Truncation analysis showed that the 1479, 1274, 1040, 888 and 742 bp promoters have similar efficiencies in activating expression of β-glucuronidase (GUS). The GUS activities of corresponding transformants reached approximately 50 % that of those containing the strong constitutive promoter PtrpC. A truncation upstream at the –572 bp position (referenced to the translation start codon ATG), however, resulted in a significant loss of GUS activity. Both the upstream absences of the −502 and −387 bp positions caused almost complete loss of GUS activity. These results suggest that PPacC is an efficient, alkaline, and salt-inducible promoter, the core cis-elements are mainly located within the –742 to –502 bp region, and promoters equal to or longer than 742 bp may be feasible for regulating gene expression in response to an ambient pH or salt stress.
- Subjects :
- DNA Mutational Analysis
Molecular Sequence Data
Biology
Real-Time Polymerase Chain Reaction
Microbiology
Genes, Reporter
Gene Expression Regulation, Fungal
Gene expression
Beauveria
Cloning, Molecular
DNA, Fungal
Promoter Regions, Genetic
Gene
Sequence Deletion
Regulation of gene expression
Gene Expression Profiling
fungi
Fungal genetics
Promoter
Sequence Analysis, DNA
Hydrogen-Ion Concentration
Molecular biology
Housekeeping gene
Gene expression profiling
Salts
Transcription Factor Gene
Transcription Factors
Subjects
Details
- ISSN :
- 14652080
- Volume :
- 160
- Issue :
- Pt 2
- Database :
- OpenAIRE
- Journal :
- Microbiology (Reading, England)
- Accession number :
- edsair.doi.dedup.....26184d4b1627cb0a3eb42b97aa51df9e