Back to Search Start Over

Quantum Confinement of Dirac Quasiparticles in Graphene Patterned with Sub‐Nanometer Precision

Authors :
Eva Cortés-del Río
Ivan Brihuega
José M. Gómez-Rodríguez
Pierre Mallet
Joaquín Fernández-Rossier
Jean-Yves Veuillen
Jose L. Lado
Héctor González-Herrero
Universidad Autonoma de Madrid (UAM)
Nano-Electronique Quantique et Spectroscopie (QuNES)
Institut Néel (NEEL)
Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)
Aalto University
International Iberian Nanotechnology Laboratory (INL)
Universidad de Alicante. Departamento de Física Aplicada
Grupo de Nanofísica
Source :
Advanced Materials, Advanced Materials, Wiley-VCH Verlag, 2020, 32 (30), pp.2001119. ⟨10.1002/adma.202001119⟩, RUA. Repositorio Institucional de la Universidad de Alicante, Universidad de Alicante (UA)
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

Quantum confinement of graphene Dirac-like electrons in artificially crafted nanometer structures is a long sought goal that would provide a strategy to selectively tune the electronic properties of graphene, including bandgap opening or quantization of energy levels However, creating confining structures with nanometer precision in shape, size and location, remains as an experimental challenge, both for top-down and bottom-up approaches. Moreover, Klein tunneling, offering an escape route to graphene electrons, limits the efficiency of electrostatic confinement. Here, a scanning tunneling microscope (STM) is used to create graphene nanopatterns, with sub-nanometer precision, by the collective manipulation of a large number of H atoms. Individual graphene nanostructures are built at selected locations, with predetermined orientations and shapes, and with dimensions going all the way from 2 nanometers up to 1 micron. The method permits to erase and rebuild the patterns at will, and it can be implemented on different graphene substrates. STM experiments demonstrate that such graphene nanostructures confine very efficiently graphene Dirac quasiparticles, both in zero and one dimensional structures. In graphene quantum dots, perfectly defined energy band gaps up to 0.8 eV are found, that scale as the inverse of the dots linear dimension, as expected for massless Dirac fermions<br />Main Manuscript and Supporting Information

Details

Language :
English
ISSN :
09359648 and 15214095
Database :
OpenAIRE
Journal :
Advanced Materials, Advanced Materials, Wiley-VCH Verlag, 2020, 32 (30), pp.2001119. ⟨10.1002/adma.202001119⟩, RUA. Repositorio Institucional de la Universidad de Alicante, Universidad de Alicante (UA)
Accession number :
edsair.doi.dedup.....25cc0055e047ddd95611ab949d4a5604