Back to Search Start Over

Insulin-like growth factor-I biocompartmentalization across blood, interstitial fluid and muscle, before and after 3 months of chronic resistance exercise

Authors :
Adam J. Sterczala
Joseph R. Pierce
Brian R. Barnes
Maria L. Urso
Ronald W. Matheny
Dennis E. Scofield
Shawn D. Flanagan
Carl M. Maresh
Edward J. Zambraski
William J. Kraemer
Bradley C. Nindl
Source :
J Appl Physiol (1985)
Publication Year :
2022
Publisher :
American Physiological Society, 2022.

Abstract

This investigation examined the influence of 12-week ballistic resistance training programs on the IGF-I system in circulation, interstitial fluid, and skeletal muscle, at rest and in response to acute exercise. Seventeen college-aged subjects (11 women/6 men; 21.7 ± 3.7 yr) completed an acute ballistic exercise bout before and after the training program. Blood samples were collected pre-, mid-, and postexercise and analyzed for serum total IGF-I, free IGF-I, and IGF binding proteins (IGFBPs) 1–4. Dialysate and interstitial free IGF-I were analyzed in vastus lateralis (VL) interstitial fluid collected pre- and postexercise via microdialysis. Pre- and postexercise VL muscle biopsies were analyzed for IGF-I protein expression, IGF-I receptor phosphorylation (p-IGF-IR), and AKT phosphorylation (p-AKT). Following training, basal serum IGF-I, free IGF-I, IGFBP-2, and IGFBP-3 decreased whereas IGFBP-1 and IGFBP-4 increased. Training reduced basal dialysate and interstitial free IGF-I but had no effect on basal skeletal muscle IGF-I, p-IGF-IR, or p-AKT. Acute exercise elicited transient changes in IGF-I system concentrations and downstream anabolic signaling both pre- and posttraining; training did not affect this acute exercise response. Posttraining, acute exercise-induced changes in dialysate/interstitial free IGF-I were strongly correlated with the changes in intramuscular IGF-I expression, p-IGF-IR, and p-AKT. The divergent influence of resistance training on circulating/interstitial and skeletal muscle IGF-I demonstrates the importance of concurrent, multiple biocompartment analysis when examining the IGF-I system. As training elicited muscle hypertrophy, these findings indicate that IGF-I’s anabolic effects on skeletal muscle are mediated by local, rather than systemic mechanisms. NEW & NOTEWORTHY In the first investigation to assess resistance training’s effects on the IGF-I system in serum, interstitial fluid, and skeletal muscle, training decreased basal circulating and interstitial IGF-I but did not alter basal intramuscular IGF-I protein activity. Posttraining, acute exercise-induced interstitial IGF-I increases were strongly correlated with intramuscular IGF-I expression and signaling. These findings highlight the importance of multibiocompartment measurement when analyzing IGF-I and suggest that IGF-I’s role in hypertrophic adaptations is locally mediated.

Details

Language :
English
Database :
OpenAIRE
Journal :
J Appl Physiol (1985)
Accession number :
edsair.doi.dedup.....25c4b748f157dbd82ae2468f8a555034