Back to Search Start Over

Growth conditions in in vitro culture can induce oxidative stress in Mammillaria gracilis tissues

Authors :
Dubravko Pavoković
Marijana Krsnik-Rasol
Mirta Tkalec
Biljana Balen
Branka Pevalek-Kozlina
Publication Year :
2009

Abstract

In vitro propagated plants of Mammillaria gracilis Pfeiff. (Cactaceae) develop calli without any exogenous growth regulators. This habituated tissue spontaneously regenerates morphologically normal as well as hyperhydric shoots. In this study, a possible involvement of activated oxygen metabolism in habituation and hyperhydricity in in vitro propagated plants of Mammillaria gracilis Pfeiff. (Cactaceae) was investigated. Significantly higher malondialdehyde (MDA) and carbonyl contents as well as hydrogen peroxide (H2O2) production were observed in habituated callus (HC), hyperhydric regenerated shoots (HS), and tumors (TT) in comparison to normal regenerated shoots (NS). Lipoxygenase (LOX) activity showed a similar trend, with a clear increase in activity in HC and HS. The activities of antioxidative enzymes, namely, peroxidase (POX), ascorbate peroxidase (APX), and catalase (CAT), were also higher in HC, HS, and TT, whereas an increase in superoxide dismutase (SOD) activity was observed in HC and HS. The majority of antioxidative isoenzymes were common to all cactus tissues, although a few tissue-specific bands were noticed. Significant decreases in phenylalanine ammonia lyase (PAL) activity, total phenolic content, and lignification were found in HS, HC, and TT in comparison to NS. Our results showed the appearance of a prominent oxidative stress in HC, HS, and TT as well as a strong induction of the antioxidant system indicating that activated oxygen metabolism could be involved in habituation and hyperhydricity and linked to the loss of tissue organization in M. gracilis.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....25bdc21342a01e28d683aa8b8884b825
Full Text :
https://doi.org/10.1007/s00344-008-9072-5