Back to Search Start Over

miR‐665 promotes the progression of gastric adenocarcinoma via elevating FAK activation through targeting SOCS3 and is negatively regulated by lncRNA MEG3

Authors :
Qianfa Long
Hanqing Guo
Kun Zhuang
Hailing Tang
Yuan Yan
Xiaolan Lu
Kun Han
Source :
Journal of Cellular Physiology. 235:4709-4719
Publication Year :
2019
Publisher :
Wiley, 2019.

Abstract

Studies have found that miR-665 acted as a tumor suppressor or an oncogene in different malignancies. miR-665 expression was elevated in gastric adenocarcinoma tissues; however, its role and mechanism in this disease are not fully clarified. The expression of miR-665 and its target gene was detected in human gastric adenocarcinoma tissues and cells. Moreover, we analyzed the effects of miR-665 on the proliferation, migration, and epithelial-mesenchymal transition (EMT) of gastric adenocarcinoma cells as well as tumor growth in vivo. The mechanisms of miR-665 in gastric adenocarcinoma were investigated by using molecular biology techniques. We found miR-665 was upregulated and suppressor of cytokine signaling 3 (SOCS3) was downregulated in gastric adenocarcinoma tissues and cells. Elevated miR-665 was positively correlated with tumor size, lymph node metastasis, invasion depth, TNM stage, and poor differentiation in gastric adenocarcinoma patients. Overexpression of miR-665 promoted, whereas knockdown of miR-665 suppressed the proliferation, migration, and EMT of gastric adenocarcinoma cells. Furthermore, we demonstrated that miR-665 functioned through targeting SOCS3, followed by activation of the FAK/Src signaling pathway in gastric adenocarcinoma cells. miR-665 antagomir inhibited tumor growth as well as the activation of the FAK/Src pathway but increased SOCS3 expression in nude mice. In addition, miR-665 expression was negatively regulated by long noncoding RNA maternally expressed gene 3 (MEG3). In conclusion, miR-665 acted as an oncogene in gastric adenocarcinoma by inhibiting SOCS3 followed by activation of the FAK/Src pathway and it was negatively modulated by MEG3. miR-665 may be a promising therapeutic target for the treatment of gastric adenocarcinoma.

Details

ISSN :
10974652 and 00219541
Volume :
235
Database :
OpenAIRE
Journal :
Journal of Cellular Physiology
Accession number :
edsair.doi.dedup.....255e473817686ddc3ca01ea3b7b02974