Back to Search
Start Over
Misiurewicz parameters and dynamical stability of polynomial-like maps of large topological degree
- Source :
- Mathematische Annalen, Mathematische Annalen, 2019, 373 (3-4), pp.901-928. ⟨10.1007/s00208-018-1642-7⟩, Mathematische Annalen, Springer Verlag, 2019, 373 (3-4), pp.901-928. ⟨10.1007/s00208-018-1642-7⟩
- Publication Year :
- 2019
- Publisher :
- HAL CCSD, 2019.
-
Abstract
- Given a family of polynomial-like maps of large topological degree, we relate the presence of Misiurewicz parameters to a growth condition for the volume of the iterates of the critical set. This generalizes to higher dimensions the well-known equivalence between stability and normality of the critical orbits in dimension one. We also introduce a notion of holomorphic motion of asymptotically all repelling cycles and prove its equivalence with other notions of stability. Our results allow us to generalize the theory of stability and bifurcation developed by Berteloot, Dupont and the author for the family of all endomorphisms of $$\mathbb P^k$$ of a given degree to any arbitrary family of endomorphisms of $$\mathbb P^k$$ or polynomial-like maps of large topological degree.
- Subjects :
- Polynomial
Endomorphism
math.CV
Mathematics::Dynamical Systems
General Mathematics
Dimension (graph theory)
[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]
Holomorphic function
Dynamical Systems (math.DS)
Topology
01 natural sciences
Stability (probability)
0101 Pure Mathematics
0102 Applied Mathematics
0103 physical sciences
FOS: Mathematics
0101 mathematics
Mathematics - Dynamical Systems
Complex Variables (math.CV)
[MATH]Mathematics [math]
Equivalence (measure theory)
Mathematics
Discrete mathematics
Science & Technology
Degree (graph theory)
Mathematics - Complex Variables
010102 general mathematics
[MATH.MATH-CV]Mathematics [math]/Complex Variables [math.CV]
32H50, 32U40, 37F45, 37F50, 37H15
16. Peace & justice
Iterated function
Physical Sciences
010307 mathematical physics
math.DS
Subjects
Details
- Language :
- English
- ISSN :
- 00255831 and 14321807
- Database :
- OpenAIRE
- Journal :
- Mathematische Annalen, Mathematische Annalen, 2019, 373 (3-4), pp.901-928. ⟨10.1007/s00208-018-1642-7⟩, Mathematische Annalen, Springer Verlag, 2019, 373 (3-4), pp.901-928. ⟨10.1007/s00208-018-1642-7⟩
- Accession number :
- edsair.doi.dedup.....25501e1a9ae13792291464dce85e108a
- Full Text :
- https://doi.org/10.1007/s00208-018-1642-7⟩