Back to Search Start Over

Misiurewicz parameters and dynamical stability of polynomial-like maps of large topological degree

Authors :
Fabrizio Bianchi
Centre National de la Recherche Scientifique (CNRS)
Laboratoire Paul Painlevé (LPP)
Université de Lille-Centre National de la Recherche Scientifique (CNRS)
ANR-13-BS01-0002,LAMBDA,Espaces de paramètres en dynamique holomorphe.(2013)
European Project: FIRB 2012
Laboratoire Paul Painlevé - UMR 8524 (LPP)
Source :
Mathematische Annalen, Mathematische Annalen, 2019, 373 (3-4), pp.901-928. ⟨10.1007/s00208-018-1642-7⟩, Mathematische Annalen, Springer Verlag, 2019, 373 (3-4), pp.901-928. ⟨10.1007/s00208-018-1642-7⟩
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

Given a family of polynomial-like maps of large topological degree, we relate the presence of Misiurewicz parameters to a growth condition for the volume of the iterates of the critical set. This generalizes to higher dimensions the well-known equivalence between stability and normality of the critical orbits in dimension one. We also introduce a notion of holomorphic motion of asymptotically all repelling cycles and prove its equivalence with other notions of stability. Our results allow us to generalize the theory of stability and bifurcation developed by Berteloot, Dupont and the author for the family of all endomorphisms of $$\mathbb P^k$$ of a given degree to any arbitrary family of endomorphisms of $$\mathbb P^k$$ or polynomial-like maps of large topological degree.

Details

Language :
English
ISSN :
00255831 and 14321807
Database :
OpenAIRE
Journal :
Mathematische Annalen, Mathematische Annalen, 2019, 373 (3-4), pp.901-928. ⟨10.1007/s00208-018-1642-7⟩, Mathematische Annalen, Springer Verlag, 2019, 373 (3-4), pp.901-928. ⟨10.1007/s00208-018-1642-7⟩
Accession number :
edsair.doi.dedup.....25501e1a9ae13792291464dce85e108a
Full Text :
https://doi.org/10.1007/s00208-018-1642-7⟩