Back to Search
Start Over
Association and Virulence Gene Expression Vary among Serotype III Group B Streptococcus Isolates following Exposure to Decidual and Lung Epithelial Cells
- Source :
- Infection and Immunity. 82:4587-4595
- Publication Year :
- 2014
- Publisher :
- American Society for Microbiology, 2014.
-
Abstract
- Group B Streptococcus (GBS) causes severe disease in neonates, the elderly, and immunocompromised individuals. GBS species are highly diverse and can be classified by serotype and multilocus sequence typing. Sequence type 17 (ST-17) strains cause invasive neonatal disease more frequently than strains of other STs. Attachment and invasion of host cells are key steps in GBS pathogenesis. We investigated whether four serotype III strains representing ST-17 (two strains), ST-19, and ST-23 differ in their abilities to attach to and invade both decidual cells and lung epithelial cells. Virulence gene expression following host cell association and exposure to amnion cells was also tested. The ST-17 strains differed in their abilities to attach to and invade decidual cells, whereas there were no differences with lung epithelial cells. The ST-19 and ST-23 strains, however, attached to and invaded decidual cells less than both ST-17 strains. Although the ST-23 strain attached to lung epithelial cells better than ST-17 and -19 strains, none of the strains effectively invaded the lung epithelial cells. Notably, the association with host cells resulted in the differential expression of several virulence genes relative to basal expression levels. Similar expression patterns of some genes were observed regardless of cell type used. Collectively, these results show that GBS strains differ in their abilities to attach to distinct host cell types and express key virulence genes that are relevant to the disease process. Enhancing our understanding of pathogenic mechanisms could aid in the identification of novel therapeutic targets or vaccine candidates that could potentially decrease morbidity and mortality associated with neonatal infections.
- Subjects :
- Serotype
Cell type
Immunology
Virulence
Biology
medicine.disease_cause
Microbiology
Cell Line
Streptococcus agalactiae
Decidua
medicine
Humans
Decidual cells
Lung
Regulation of gene expression
Epithelial Cells
Gene Expression Regulation, Bacterial
Molecular Pathogenesis
Virology
Infectious Diseases
Cell culture
Multilocus sequence typing
Female
Parasitology
Subjects
Details
- ISSN :
- 10985522 and 00199567
- Volume :
- 82
- Database :
- OpenAIRE
- Journal :
- Infection and Immunity
- Accession number :
- edsair.doi.dedup.....2549b6efc8448330b02836e30f8318e6
- Full Text :
- https://doi.org/10.1128/iai.02181-14