Back to Search Start Over

Self-Propelled Nanomotors for Thermomechanically Percolating Cell Membranes

Authors :
Luru Dai
Jingxin Shao
Changyong Gao
Mingjun Xuan
Qiang He
Wei Wang
Source :
Angewandte Chemie International Edition. 57:12463-12467
Publication Year :
2018
Publisher :
Wiley, 2018.

Abstract

We report a near-infrared (NIR) light-powered Janus mesoporous silica nanomotor (JMSNM) with macrophage cell membrane (MPCM) cloaking that can actively seek cancer cells and thermomechanically percolate cell membrane. Upon exposure to NIR light, a heat gradient across the Janus boundary of the JMSNMs is generated by the photothermal effect of the Au half-shells, resulting in a self-thermophoretic force that propels the JMSNMs. In biological medium, the MPCM camouflaging can not only prevent dissociative biological blocks from adhering to JMSNMs but also improve the seeking sensitivity of the nanomotors by specifically recognizing cancer cells. The biofriendly propulsion and recognition capability enable JMSNMs to achieve the active seeking and bind to the membrane of cancer cells. Subsequent illumination with NIR then triggers the photothermal effect of MPCM@JMSNMs to thermomechanically perforate the cytomembranes for guest molecular injection. This approach integrates the functions of active seeking, cytomembranes perforating, and thermomechanical therapy in nanomotors, which may pave the way to apply self-propelled motors in biomedical fields.

Details

ISSN :
14337851
Volume :
57
Database :
OpenAIRE
Journal :
Angewandte Chemie International Edition
Accession number :
edsair.doi.dedup.....25441957f3d372c84e63103b45477ffe
Full Text :
https://doi.org/10.1002/anie.201806759