Back to Search
Start Over
A subalgebra of 0-Hecke algebra
- Source :
- Journal of Algebra. 322(11):4030-4039
- Publication Year :
- 2009
- Publisher :
- Elsevier BV, 2009.
-
Abstract
- Let $(W, I)$ be a finite Coxeter group. In the case where $W$ is a Weyl group, Berenstein and Kazhdan in \cite{BK} constructed a monoid structure on the set of all subsets of $I$ using unipotent $\chi$-linear bicrystals. In this paper, we will generalize this result to all types of finite Coxeter groups (including non-crystallographic types). Our approach is more elementary, based on some combinatorics of Coxeter groups. Moreover, we will calculate this monoid structure explicitly for each type.<br />Comment: 12 pages, to appear in J. Algebra
- Subjects :
- Pure mathematics
Group Theory (math.GR)
Coxeter groups
0102 computer and information sciences
Unipotent
01 natural sciences
symbols.namesake
Mathematics::Group Theory
FOS: Mathematics
Representation Theory (math.RT)
0101 mathematics
Longest element of a Coxeter group
Mathematics::Representation Theory
Mathematics
Discrete mathematics
Weyl group
Algebra and Number Theory
Coxeter notation
010102 general mathematics
Coxeter group
0-Hecke algebra
010201 computation theory & mathematics
Coxeter complex
symbols
Artin group
20F55
Coxeter element
Mathematics - Group Theory
Mathematics - Representation Theory
Subjects
Details
- ISSN :
- 00218693
- Volume :
- 322
- Issue :
- 11
- Database :
- OpenAIRE
- Journal :
- Journal of Algebra
- Accession number :
- edsair.doi.dedup.....25332e17cbfdd058a7390bbdef48b9a5
- Full Text :
- https://doi.org/10.1016/j.jalgebra.2009.04.003