Back to Search
Start Over
Correcting Rate Constants from Anharmonic Molecular Dynamics for Quantum Effects
- Source :
- ACS Omega, ACS Omega, Vol 5, Iss 5, Pp 2242-2253 (2020)
- Publication Year :
- 2020
- Publisher :
- American Chemical Society, 2020.
-
Abstract
- Anharmonicity can greatly affect rate constants. One or even several orders of magnitude of deviation are found for obtaining rate constants using the standard rigid-rotor harmonic-oscillator model. In turn, reactive molecular dynamics (MD) simulations are a powerful way to explore chemical reaction networks and calculate rate constants from the fully anharmonic potential energy surface. However, the classical nature of the dynamics and the required numerical efficiency of the force field limit the accuracy of the resulting kinetics. We combine the best of both worlds by presenting an approximation that pairs anharmonic information intrinsic to classical MD with high-accuracy energies and frequencies from quantum-mechanical electronic structure calculations. The proposed scheme is applied to hydrogen abstractions in the methane system, which allows for the benchmarking of rate constants corrected by our approach against experimental rate constants. This comparison reveals a standard deviation of factor 2.6. Two archetypes of possible failure are identified in the course of a detailed investigation of the CH3• + H• → CH22• + H2 reaction. From this follows the application range of the method, within which the method shows a standard deviation of factor 2.1. The computational efficiency and beneficial scaling of the method allow for application to larger systems, as shown for hydrogen abstraction from 2-butanone by HO2•.
- Subjects :
- Physics
010304 chemical physics
General Chemical Engineering
Anharmonicity
Thermodynamics
General Chemistry
010402 general chemistry
01 natural sciences
7. Clean energy
Article
0104 chemical sciences
Orders of magnitude (entropy)
Molecular dynamics
Chemistry
Reaction rate constant
0103 physical sciences
QD1-999
Subjects
Details
- Language :
- English
- ISSN :
- 24701343
- Volume :
- 5
- Issue :
- 5
- Database :
- OpenAIRE
- Journal :
- ACS Omega
- Accession number :
- edsair.doi.dedup.....24fdcc03e3f79e820f6d49c4b5972355