Back to Search Start Over

A brief analysis of the holistically-nested edge detector

Authors :
Rafael Grompone von Gioi
Gregory Randall
Grompone von Gioi Rafael, Université Paris-Saclay, France
Randall Gregory, Universidad de la República (Uruguay). Facultad de Ingeniería.
Source :
COLIBRI, Universidad de la República, instacron:Universidad de la República
Publication Year :
2022
Publisher :
Centre Borelli, ENS Paris-Saclay; DMI, Universitat de les Illes Balears; Fing, Universidad de la República., 2022.

Abstract

Este artículo está disponible en línea con materiales complementarios, software, conjuntos de datos y demostración en https://doi.org/10.5201/ipol.2022.422 This work describes the HED method for edge detection. HED uses a neural network based on a VGG16 backbone, supplemented with some extra layers for merging the results at different scales. The training was performed on an augmented version of the BSDS500 dataset. We perform a brief analysis of the results produced by HED, highlighting its quality but also indicating its limitations. Overall, HED produces state-of-the-art results.

Details

Language :
English
Database :
OpenAIRE
Journal :
COLIBRI, Universidad de la República, instacron:Universidad de la República
Accession number :
edsair.doi.dedup.....24a99dfff75067d75346187926a3f89a