Back to Search Start Over

Universality classes of spin transport in one-dimensional isotropic magnets: the onset of logarithmic anomalies

Authors :
Enej Ilievski
Christoph Karrasch
Jacopo De Nardis
Marko Medenjak
institut de Physique Théorique Philippe Meyer (IPM)
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Source :
PHYSICAL REVIEW LETTERS, Phys.Rev.Lett., Phys.Rev.Lett., 2020, 124 (21), pp.210605. ⟨10.1103/PhysRevLett.124.210605⟩
Publication Year :
2020
Publisher :
arXiv, 2020.

Abstract

We report a systematic study of finite-temperature spin transport in quantum and classical one-dimensional magnets with isotropic spin interactions, including both integrable and non-integrable models. Employing a phenomenological framework based on a generalized Burgers' equation in a time-dependent stochastic environment, we identify four different universality classes of spin fluctuations. These comprise, aside from normal spin diffusion, three types of superdiffusive transport: the KPZ universality class and two distinct types of anomalous diffusion with multiplicative logarithmic corrections. Our predictions are supported by extensive numerical simulations on various examples of quantum and classical chains. Contrary to common belief, we demonstrate that even non-integrable spin chains can display a diverging spin diffusion constant at finite temperatures.<br />Comment: Typos corrected, references added and new supplementary material A on the classical simulations

Details

ISSN :
00319007 and 10797114
Database :
OpenAIRE
Journal :
PHYSICAL REVIEW LETTERS, Phys.Rev.Lett., Phys.Rev.Lett., 2020, 124 (21), pp.210605. ⟨10.1103/PhysRevLett.124.210605⟩
Accession number :
edsair.doi.dedup.....24a6337f202f0d14b379c25c57362e04
Full Text :
https://doi.org/10.48550/arxiv.2001.06432