Back to Search
Start Over
Bioinspired, High-Sensitivity Mechanical Sensors Realized with Hexagonal Microcolumnar Arrays Coated with Ultrasonic-Sprayed Single-Walled Carbon Nanotubes
- Source :
- ACS Applied Materials & Interfaces. 12:18813-18822
- Publication Year :
- 2020
- Publisher :
- American Chemical Society (ACS), 2020.
-
Abstract
- The development of a flexible electronic skin (e-skin) highly sensitive to multimodal vibrations and a specialized sensing ability is of great interest for a plethora of applications, such as tactile sensors for robots, seismology, healthcare, and wearable electronics. Here, we present an e-skin design characterized by a bioinspired, microhexagonal structure coated with single-walled carbon nanotubes (SWCNTs) using an ultrasonic spray method. We have demonstrated the outstanding performances of the device in terms of the capability to detect both static and dynamic mechanical stimuli including pressure, shear displacement, and bending using the principles of piezoresistivity. Because of the hexagonal microcolumnar array, whose contact area changes according to the mechanical stimuli applied, the interlock-optimized geometry shows an enhanced sensitivity. This produces an improved ability to discriminate the different mechanical stimuli that might be applied. Moreover, we show that our e-skins can detect, discriminate, and monitor various intensities of different external and internal vibrations, which is a useful asset for various applications, such as seismology, smart phones, wearable human skins (voice monitoring), etc.
- Subjects :
- Materials science
Electronic skin
02 engineering and technology
Carbon nanotube
Bending
law.invention
Wearable Electronic Devices
law
Humans
Ultrasonics
General Materials Science
Wearable technology
Mechanical Phenomena
Nanotubes, Carbon
business.industry
020502 materials
Equipment Design
021001 nanoscience & nanotechnology
Vibration
0205 materials engineering
Voice
Optoelectronics
Ultrasonic sensor
Smartphone
Electronics
0210 nano-technology
business
Contact area
Tactile sensor
Subjects
Details
- ISSN :
- 19448252 and 19448244
- Volume :
- 12
- Database :
- OpenAIRE
- Journal :
- ACS Applied Materials & Interfaces
- Accession number :
- edsair.doi.dedup.....2481f64230113289f88a849844665d6a