Back to Search Start Over

Stabilizing dynamic controllers for hybrid systems : a hybrid control lyapunov function approach

Authors :
W. P. Maurice H. Heemels
Mircea Lazar
Stefano Di Cairano
Alberto Bemporad
Control Systems Technology
Control Systems
Control of high-precision mechatronic systems
Constrained Control of Complex Systems
Dynamic Networks: Data-Driven Modeling and Control
Source :
IEEE Transactions on Automatic Control, 59(10), 2629-2643. Institute of Electrical and Electronics Engineers
Publication Year :
2014

Abstract

This paper proposes a dynamic controller structure and a systematic design procedure for stabilizing discrete-time hybrid systems. The proposed approach is based on the concept of control Lyapunov functions (CLFs), which, when available, can be used to design a stabilizing state-feedback control law. In general, the construction of a CLF for hybrid dynamical systems involving both continuous and discrete states is extremely complicated, especially in the presence of non-trivial discrete dynamics. Therefore, we introduce the novel concept of a hybrid control Lyapunov function, which allows the compositional design of a discrete and a continuous part of the CLF, and we formally prove that the existence of a hybrid CLF guarantees the existence of a classical CLF. A constructive procedure is provided to synthesize a hybrid CLF, by expanding the dynamics of the hybrid system with a specific controller dynamics. We show that this synthesis procedure leads to a dynamic controller that can be implemented by a receding horizon control strategy, and that the associated optimization problem is numerically tractable for a fairly general class of hybrid systems, useful in real world applications. Compared to classical hybrid receding horizon control algorithms, the proposed approach typically requires a shorter prediction horizon to guarantee asymptotic stability of the closed-loop system, which yields a reduction of the computational burden, as illustrated through two examples.

Details

Language :
English
ISSN :
00189286
Volume :
59
Issue :
10
Database :
OpenAIRE
Journal :
IEEE Transactions on Automatic Control
Accession number :
edsair.doi.dedup.....2478643f1f2762b4d23e8f3fbf3beb5a
Full Text :
https://doi.org/10.1109/tac.2014.2324111