Back to Search Start Over

A mass conservative approach to model the ultrasonic de-agglomeration of ZnO nanoparticle suspension in water

Authors :
E. Schaer
Philippe Marchal
A. Ledieu
C. Lemaître
Jean-Philippe Guillemin
H. Nonnet
Davey Bickford
Le Moulin Gaspard
Laboratoire Réactions et Génie des Procédés (LRGP)
Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
LEDMC - Laboratoire d'Etude et Développement des Matrices de Conditionnement (LEDMC)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)
Source :
Powder Technology, Powder Technology, Elsevier, 2012, 219, pp.59-64. ⟨10.1016/j.powtec.2011.12.009⟩, Powder Technology, 2012, 219, pp.59-64. ⟨10.1016/j.powtec.2011.12.009⟩
Publication Year :
2012
Publisher :
Elsevier BV, 2012.

Abstract

International audience; This paper deals with the non conservation of volume during ultrasonic breakage of ZnO particles whose density varies against size. The observed volumetric particle distributions, obtained by light scattering measurements, are transformed into mass distributions using an expression of the density variation against size based on the fractal dimension. Calculations are then performed using a discretization method given in literature. To validate calculated results, ultrasonic fragmentation of zinc dioxide nanopowder in water is performed in cell dispersion to follow the evolution of the particle size distribution against time. Furthermore, calculated results are adjusted to the experimental particle size distribution curves to determine the breakage frequency constant. This parameter varies with the energy released by the collapse of the cavitation bubbles. Most work on mechanisms of fragmentation by ultrasound is based on the electrical power consumption required for the dispersion of agglomerate. Here, the study focuses on the thermal power which is correlated to the breakage frequency constant. Finally it is found that this parameter is also function of the square root of the thermal power.

Details

ISSN :
00325910
Volume :
219
Database :
OpenAIRE
Journal :
Powder Technology
Accession number :
edsair.doi.dedup.....24766a86f9bc2501a179aad91277f4f9