Back to Search
Start Over
Key data quality pitfalls for condition based maintenance
- Source :
- 2017 2nd International Conference on System Reliability and Safety (ICSRS)
- Publication Year :
- 2017
- Publisher :
- IEEE, 2017.
-
Abstract
- openaire: EC/H2020/688203/EU//BIoTope In today's competitive and fluctuating market, original equipment manufacturers (OEMs) must be able to offer aftersales services along with their products, such as condition based maintenance, extended warranty services etc. Condition based maintenance requires detailed understanding about products' operational behaviour, to detect problems before they occur, and react accordingly. Typically, Condition based maintenance consists of data collection, data analysis, and maintenance decision stages. Within this context, data quality is one of the key drivers in the knowledge acquisition process since poor data quality impacts the downstream maintenance processes, and reciprocally, high data quality will foster good decision making. The prospect of new business opportunities and better services to customers encourages companies to collect large amounts of data that have been generated in different stages of product lifecycle. Despite of availability of data, as well as advanced statistical and analytical tools, companies are still struggling to provide effective service by reducing maintenance cost and improving uptime. This paper highlights data related pitfalls that hinder organisations to improve maintenance services. These pitfalls are based on case studies of two globally operating Finnish manufacturing companies where maintenance is one of the major streams of income.
- Subjects :
- ta113
Service (business)
0209 industrial biotechnology
Computer science
Condition-based maintenance
data analysis
05 social sciences
Warranty
data reliability
after-sales service
02 engineering and technology
Original equipment manufacturer
Maintenance engineering
020901 industrial engineering & automation
Product lifecycle
Risk analysis (engineering)
condition based maintenance
statistics
Data quality
Data integrity
0502 economics and business
data quality
050203 business & management
Subjects
Details
- ISBN :
- 978-1-5386-3322-9
- ISBNs :
- 9781538633229
- Database :
- OpenAIRE
- Journal :
- 2017 2nd International Conference on System Reliability and Safety (ICSRS)
- Accession number :
- edsair.doi.dedup.....24690f99315d3e5977d1f80e0f1049e7
- Full Text :
- https://doi.org/10.1109/icsrs.2017.8272868